Efficient Salient Region Detection with Soft Image Abstraction


Ming-Ming Cheng
      Jonathan Warrell       Wen-Yan Lin        Shuai Zheng       Vibhav Vineet         Nigel Crook

Vision Group, Oxford Brookes University

Abstract

Detecting visually salient regions in images is one of the fundamental problems in computer vision. We propose a novel method to decompose an image into large scale perceptually homogeneous elements for efficient salient region detection, using a soft image abstraction representation. By considering both appearance similarity and spatial distribution of image pixels, the proposed representation abstracts out unnecessary image details, allowing the assignment of comparable saliency values across similar regions, and producing perceptually accurate salient region detection. We evaluate our salient region detection approach on the largest publicly available dataset with pixel accurate annotations. The experimental results show that the proposed method outperforms 18 alternate methods, reducing the mean absolute error by 25.2% compared to the previous best result, while being computationally more efficient.

Paper

  1. Efficient Salient Region Detection with Soft Image Abstraction. Ming-Ming Cheng, Jonathan Warrell, Wen-Yan Lin, Shuai Zheng, Vibhav Vineet, Nigel Crook. ICCV 2013. [pdf][bib][latex]

Supplemental materials

  • Results comparisons to 18 alternative methods for MSRA 1000 dataset in a 79M PDF.
  • Our result saliency maps: 31MB ZIP, results for other methods (360M ZIP).
  • Prototype software: 2M ZIP.
  • C++ source code is available. It runs 90 fps at my computer (CPU: Intel(R) core (TM) i7 cup 970 @ 3.2 GHz).

Other closely related projects:

1. Salient object detection and segmentation

2. Group saliency

说点什么

29 Comments on "Efficient Salient Region Detection with Soft Image Abstraction"

Notify of
avatar
meng
Guest
meng

程老师您好! 我有两个问题:1. 我看到这篇文章的代码在CmCode-master里也有出现,并且看起来很一致,请问CmCode-master和SaliencyICCV2013有什么区别么?2. 运行在CmCode-master中的这篇论文中的方法后,得到了非二值化的,类似figure 4中的saliency map。后续的adaptive thresholding的code可以在哪里找到么? 谢谢~!

Zhang
Guest
Zhang

您好,我也配置了这个项目,但是在cmd里运行时出现:
Precision = -1.#IND, recall = -1.#IND, F-Measure = -1.#IND, intUnion = -1.#IND,mae = -1.#IND
这样的问题。请问您遇到过吗?希望能帮下,多谢

weiguo
Guest
weiguo

老师您好,在主页下载这篇文章,文中的Figure3不完整,有一篇是白的。

Xinxin
Guest
Xinxin

程老师,您好,麻烦问一下GMM分解以及同质区域合并的结果图您是怎么显示出来的,对应代码中哪些量呢,我很关心您论文中图3的那个结果,恳请您回复!

Xiaoyi
Guest
Xiaoyi

程老师,关于你的THUS-10000数据库,我有一个问题:您这个数据库中的图像是如何从MSRA数据库中挑选的?是全部包括了MSRA_B中的所有图像,再加上一部分MSRA_A中的图像么?还是既包括了MSRA_B中的部分图像,也包含了MSRA_A中的部分图像呢?因为我写论文要用这个数据库,所以需要知道这些信息,谢谢。

Jun
Guest
Jun

您好,Supplemental materials里的 results for other methods下载不了这个压缩包呢,您能重新提供下链接吗?谢谢~

wpDiscuz