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Abstract

The concepts of objects and attributes are both impor-
tant for describing images precisely, since verbal descrip-
tions often contain both adjectives and nouns (e.g. ‘I see
a shiny red chair’). In this paper, we formulate the prob-
lem of joint visual attribute and object class image seg-
mentation as a dense multi-labelling problem, where each
pixel in an image can be associated with both an object-
class and a set of visual attributes labels. In order to learn
the label correlations, we adopt a boosting-based piecewise
training approach with respect to the visual appearance
and co-occurrence cues. We use a filtering-based mean-
field approximation approach for efficient joint inference.
Further, we develop a hierarchical model to incorporate
region-level object and attribute information. Experiments
on the aPASCAL, CORE and attribute augmented NYU in-
door scenes datasets show that the proposed approach is
able to achieve state-of-the-art results.

1. Introduction
Using objects and attributes jointly provides a much

more precise way to describe the content of a scene than
using only one alone. e.g., the image description a shiny
red chair is more precise than the description chair on its
own. Motivated by this fact, we introduce the problem
of joint attribute-object image segmentation, where each
image pixel is labelled with (i) an object label, such as
car or road, (ii) visual attribute labels such as materials
(wood, glass), and (iii) surface properties (shiny, glossy).
We also make the distinction between things and stuff;
where objects with a well defined shape and centroid are
called things, and amorphous objects are refered to as
stuff [13, 14, 21]. This problem is well suited for being
solved in a joint hierarchical model, as the attributes can
help with the object predictions and vice versa in both re-
gion and pixel levels.

In semantic image segmentation for object classes, exist-
ing approaches, e.g. [20, 31], treat the problem as a multi-
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Figure 1. Illustration of the proposed approach. (a) shows the
input image, a scene image from NYU dataset. (b) represents the
semantic label space including pixel-level objects and attributes,
region-level objects and region attributes. (e) shows conceptual
ideal results for dense semantic segmentation with objects and at-
tributes. Best view in color.

class classification problem, where the goal is to associate
each pixel with one of the object class labels. Recent
works have also shown the advantages of using visual at-
tributes [9, 11, 23, 29] and relative visual attributes [24]
in object recognition, object localization [23, 27, 39], and
scene classification [25, 40]. However, few of these works
have been proposed to address the problem of dense image
segmentation for things and stuff using attributes, and it is
not yet clear whether visual attributes improve the perfor-
mance of object segmentation.

In this paper, we model scene images using a fully-
connected multi-label conditional random field (CRF) with
joint learning and inference. In our framework each image
pixel is associated with both a set of attributes and a sin-
gle object-class label, as illustrated in Fig. 1. In order to
efficiently tackle the multi-labelling problem, we break it
down into manageable multi-class and binary subproblems
using a factorial CRF framework [15, 22, 34]. The struc-
ture of the factorial CRF we propose includes links between
object and attribute factors that explicitly allow us to model
correlations between these output variables. In order to han-
dle the use of attributes at different levels, we also propose a
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hierarchical model in which both objects and attributes are
labelled at two levels, pixels and regions. Using the regions
provided by the efficient object detector [1, 5, 10, 37] and
the segmentation methods [2, 3, 4, 26], we can predict at-
tributes such as shape, which apply to object instances as a
whole. This allows us to deal with attributes both for objects
of fixed spatial extent, i.e. things that can be detected with
deformable part based detector (e.g. chair, etc) as well as
amorphous objects (stuff), i.e. ones that are more ambigu-
ous (e.g. floor, etc). Previous works [8, 9] have only focused
on one of these forms and have not attempted to solve both
types. To learn the correlations between factors we employ
a boosting framework [28, 30] that exploits both the visual
similarity and co-occurrence relations between object and
attributes labels. This provides an effective piecewise learn-
ing strategy to train the model. To perform joint inference
we use a mean field based algorithm [18, 38, 19]. This al-
lows us to use a fully-connected graph topology for both ob-
ject and attribute factor CRFs, whilst maintaining efficiency
through filtering.

Our work is different from previous works [12, 35] in
several ways. Both these approaches deal only with a very
limited set of spatial attributes. While Tighe et al. [35] con-
sider a region MRF with only adjacent pairwise connections,
we propose a hierarchical model with both pixel and region
levels, which is fully-connected at the pixel level. We also
use mean-field inference rather than graph-cuts to handle
the dense topology. Gould et al. [12] only consider pixel la-
belling for object classes and spatial attributes. In contrast,
our approach can deal with a much more general problem.
Furthermore, we also differ substantially from [6]. They
have also considered the task of estimating objects and at-
tributes in images. However the focus of that work is to
analyse the use of verbal interactions, performed by the
user, in order to verbally guide image editing. They have not
explored a hierarchical formulation, as done in this work,
which is important to achieve a higher level of accuracy.
Also, they have not considered learning the attribute-object
relationship using a boosting-based piecewise training.

Our contributions in this paper are as follows:

• We present an efficient hierarchical fully-connected
multi-label CRF based framework, which involves as-
signing pixels with object class and attributes labels.

• We explore a piecewise boosting-based training strat-
egy to learn the label correlations based on visual ap-
pearance similarity and label co-occurrence statistics.

• We augment the NYU dataset [32] with attribute labels
(attribute NYU dataset, aNYU) to provide a benchmark
to encourage alternative approaches.

2. Factorial Multi-Label CRF Model
We address the problem of joint semantic image seg-

mentation for objects and attributes using a multi-label CRF,
which we factor into multi-class and binary CRFs.

2.1. Multi-class CRF for Objects

We first review a general multi-class CRF model, which
we will use as a factor in the joint model for the object
classes, and which we generalize below to form the multi-
label CRF for attribute labels. We define the CRF over a set
of random variables, X = {X1, X2, ..., Xn}, where each
variable will take values from a set of object labels, xi ∈ O,
where O = {l1, l2, ..., lk}. We denote by x a joint config-
uration of these random variables, and write I for the ob-
served image data. The random field is defined over a graph
G(V, E) with the i-th vertex being associated with a cor-
responding Xi and (i, j) ∈ E representing the i-th vertex
and the jth vertex are connected by an edge. A pairwise
multi-class CRF model can be defined in terms of an energy
function:

EO(x) =
∑
i∈V

ψOi (xi) +
∑
{i,j}∈E

ψOij (xi, xj), (1)

where ψOi and ψOij are potential functions discussed be-
low. The probability of a configuration x under the CRF
distribution is found by normalizing the exponential of its
negative energy, P (x|I) ∝ exp(−EO(x)). Although it
is generally computationally infeasible to calculate P (x|I)
exactly due to the partition function, various approximate
methods for inference exist, such as approximate maxi-
mum a posteriori methods (e.g. graph-cuts) which mini-
mize Eq. 1, or variational methods, such as mean-field ap-
proximate P (x|I) [18], and allow us to approximately es-
timate a maximum posteriori marginals solution (MPM),
x?i = arg maxl

∑
{x′|xi=l} P (x′).

Typical graph topologies for object class segmentation
consider V to correspond to the pixels of an image, and E as
a 4 or 8-connected neighborhood relation. Recently, mean-
field inference methods have also made it possible to use a
fully connected graph, where E connects every pair of pix-
els, i.e. E = {(i, j)|i, j ∈ V, i 6= j} (see [18]) given certain
forms of pairwise potential, and we shall follow this ap-
proach in our models. Further, a hierarchical topology may
be used, as in [21], which is discussed below.

We set ψOi (xi) = − log(Pr(Xi = xi)), where the proba-
bility is derived from a discriminatively trained pixel classi-
fier, TextonBoost [20, 31] 1. The potential ψOij (xi, xj) takes
the form of a Potts model:

ψOij (xi, xj) =

{
0 if xi = xj ,

g(i, j) otherwise. (2)
1TextonBoost in this paper means the unary potential in ALE li-
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For a fully connected graph topology as in [18] g(i, j) is
defined as:

g(i, j) =w(1) exp(−|pi − pj |
2

2θ2µ
− Ii − Ij

2θ2ν
)

+ w(2) exp(−|pi − pj |
2

2θ2γ
), (3)

where pi indicates the location of the ith pixel, Ii indicates
the intensity of the ith pixel, and θµ,θν , and θγ are the pa-
rameters.

2.2. Multi-label CRF for Attributes

We define a multi-label CRF for attributes similarly to
the multi-class CRF above, but where the random variables
take sets of labels instead of single labels. These sets rep-
resent the set of attributes present in a pixel. Formally, we
have a set of random variables Y = {Y1, Y2, ..., Yn}, and a
set of attribute labels, A = {a1, a2, ..., am}. Rather than
taking values directly in A though, the Yi’s take values in
the power-set of the attributes, i.e. yi ∈ P(A), where P
is the power-set operator. As in the multi-class case, y is
a joint assignment of these random variables. If we ignore
the object labels for now, we can define a multi-label CRF
distribution by an energy over Y as:

EA(y) =
∑
i∈V

ψAi (yi) +
∑
{i,j}∈E

ψAij(yi, yj), (4)

and we imply that P (y|I) ∝ exp(−EA(y)). In general,
since |P(A)| grows exponentially with |A|, the number of
parameters in ψAi and ψAij will also grow exponentially if
we allow arbitrary potential forms. Below, we describe how
we factorize these terms, leading to a tractable model at in-
ference time.

We express ψAi (yi) as follows:

ψAi (yi) =
∑
a

ψAi,a(yi,a)+
∑
a1 6=a2

ψAi,a1,a2(yi,a1 , yi,a2). (5)

Here we use auxiliary binary indicator variables yi,a, where
yi,a = [a ∈ yi] (where [.] is the Iverson bracket), which is
1 for a true condition and 0 otherwise (i.e. yi,a indicates
whether attribute a is present in the set at pixel i). We set
ψAi,a(yi,a) based on the output of a probabilistic classifier,
ψAi,a(b) = − log(Pr(yi,a = b)), b ∈ {0, 1}. For this pur-
pose, we train m independent binary TextonBoost classi-
fiers [20], one for each attribute. Further, we set:

ψAi,a1,a2(yi,a1 , yi,a2) =

{
0 if yi,a1 = yi,a2 ,
RA(a1, a2) otherwise,

(6)
where RA(a1, a2) ∈ [−1, 1] is a learnt correlation between
a1 and a2. Hence, for highly correlated attributes, we pay a
high cost if their indicators do not match. We discuss how
to learn RA in Sec. 3.

We define ψAi,j(yi, yj) as follows:

ψAi,j(yi, yj) =
∑
a

ψAi,j,a(yi,a, yj,a). (7)

Here, we define ψAi,j,a as a Potts model over binary indica-
tors:

ψAi,j,a(yi,a, yj,a) =

{
0 if yi,a = yj,a,

g(i, j) otherwise, (8)

where, as above, we take g(i, j) as in Eq.3 for the fully
connected model, allowing us to use filter-based inference.

2.3. Factorial CRF for Objects and Attributes

We now describe our combined CRF model for objects
and attributes. We define the CRF over random variables
Z = {Z1, Z2, ..., Zn}, where we take Zi = (Xi, Yi), i.e. a
combination of an object label and an attribute set. Hence,
zi ∈ J = O × P(A), where we write J for joint label set.
We then define a joint CRF in terms of a pairwise energy
over the Zi’s as above:

EJ (z) =
∑
i∈V

ψJi (zi) +
∑
{i,j}∈E

ψJij (zi, zj), (9)

and let P (z|I) ∝ exp(−EJ (z)).
Note that, equivalently, we could think of Eq. 9 as defin-

ing a single multi-label CRF over both object and attribute
label sets, i.e. zi ∈ P(O∪A). The factorization into multi-
class object and multi-label attribute components makes the
assumption that any configuration z has infinite energy (or
zero probability) for some i and object labels l1 6= l2,
l1 ∈ zi and l2 ∈ zi, or l /∈ zi for all l. Indeed, it may be
appropriate in certain cases to allow multiple object labels
at each pixel, for instance if we have a semantic hierarchy
including labels such as animal, mammal, dog etc., or a hi-
erarchy of parts such as bicycle, wheel, spoke etc. In this
case we would form a product of two multi-label CRF.

We define the joint unary potential as follows:

ψJi (zi) = ψOi (xi) + ψAi (yi) +
∑
l,a

ψOAi,l,a(xi, yi,a), (10)

where ψOi and ψAi are defined as above, and the final term
takes the form:

ψOAi,l,a(xi, yi,a) =

{
0 if yi,a = [xi = l]

ROA(l, a) otherwise,
(11)

where, as before ROA(l, a) ∈ [−1, 1] is a learnt correlation
between l and a. The first condition in Eq. 11 is satisfied if
xi = l holds, and yi,a = 1 is also satisfied.

Our joint pairwise term simply combines the individual
object and attribute pairwise terms:

ψJij (zi, zj) = ψOij (xi, xj) + ψAij(yi, yj). (12)



2.4. Hierarchical Model

In addition to a fully connected CRF over a pixel variable
set, we also consider a two-level hierarchial model, where,
in addition to labelling object classes and attributes at the
pixel level, we also label objects and attributes at a region
level, as shown in Fig. 2. We thus consider that our vertex
set is partitioned into disjoint sets Vpix and Vreg, each associ-
ated with its own set of attributes, Apix, Areg. We maintain
dense connectivity over all variables at the pixel level, i.e.
(i, j) ∈ E for all i 6= j and i, j ∈ Vpix. For each j ∈ Vreg,
we assume that we have a subset of pixels Sj ⊂ Vpix (which
represent the region), and that the edge set contains an edge
joining each region variable to all the pixels in its subset,
(i, j) ∈ E for all i ∈ Sj . This gives rise to the energy:

EH(z) =
∑
i∈Vpix

ψJi (zi) +
∑

(i,j)∈E,
i,j∈Vpix

ψJij (zi, zj)

+
∑
i∈Vreg

ψJ
′

i (zi) +
∑

(i,j)∈E,
i∈Vpix,j∈Vreg

ψJ
′

ij (zi, zj), (13)

where we implicitly take ψJi (zi) = ∞ if a ∈ yi with i ∈
Vpix and a ∈ Areg, and vice versa for region variables and
object attributes.

Similar to [21], we use the efficient object detector [10,
5] and binary segmentation methods [4] to get regions Sj .
We thus assume that we have a proposed object class for
each region, oj ∈ O, j ∈ Vreg, and an associated score from
the detector, sj . Also, we train a classifier to produce proba-
bilistic outputs for all attributesAreg at the region level, and
estimate a correlation matrix ROAreg between objects and
region level attributes. The joint unary terms of a region
ψJ

′

i (zi) then take the same form as Eq. 10, except that we
set ψOi (xi) = 0 for all xi, and ψOAreg

i,l,a (xi, yi,a) = 0 for all
xi 6= oi. Our region-pixel pairwise terms take the form:

ψJ
′

ij (zi, zj) =

{
−sj if xi = oj and xj = oj

0 otherwise.
(14)

where, sj is the score from the jth region associated object
detector.

2.5. Inference in the Joint CRF

Following Krahenbuhl et al. [18], we adopt a mean field
approximation approach for inference. This involves find-
ing a mean field approximationQ(z) that minimizes the KL-
divergence D(Q||P ) among all distributions Q that can be
expressed as a product of independent marginals, Q(z) =∏
iQi(zi). Given the form of our factorial model, we can

factorize Q further into a product of marginals over multi-
class object and binary attribute variables. Hence we take
Qi(zi) = QOi (xi)

∏
aQ
A
i,a(yi,a), whereQOi is a multi-class
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Figure 2. Illustration of Factorial-CRF-based Semantic Seg-
mentation for object classes and Attributes. (a) shows the input
image. (b) shows the ground truth mask image for object classes.
(c) shows the attributes masks. (d) compares various CRF topolo-
gies including a grid CRF, a fully-connected CRF, and a hierarchial
fully connected CRF. Best view in color.

distribution over the object labels, and QAi,a is a binary dis-
tribution over {0, 1}.

Given this factorization, we can express the required
mean field updates (see [17]) for the non-hierarchical model
as:

QOi (xi = l) =
1

ZOi
exp{−ψOi (l)

−
∑
j 6=i

QOj (xj = l)(−g(i, j))

−
∑

a,b∈{0,1}

QAja(yja = b)ψOAi,xi,a(l, b)},

(15)

and

QAi,a(yi,a = b) =
1

ZAia
exp{−ψAia(b)

−
∑
j 6=i

QAja(yja = b)(−g(i, j))−

∑
a′ 6=a,b′∈{0,1}

QAia′(yia′ = b′)ψAi,a,a′(b, b
′)

−
∑
l

QOi (xi = l)ψOAi,l,a(l, b), (16)

where ZOi and ZAia are per-pixel normalization factors, and
b ∈ {0, 1}. As in [18], we can efficiently evaluate the pair-
wise summations in Eq. 15 and Eq. 16 using n + m Gaus-
sian convolutions given that our pairwise factors take Potts
forms as described. Updates for the hierarchical model take
a similar form.



2.6. Learning parameters for the CRF

For the low-level feature descriptors (LBP, SIFT, HOG,
Texton, Color SIFT), we fixed the parameters for the
datasets according to the setting for the best results on PAS-
CAL VOC 2010 dataset using AHCRF [20]. Regarding the
parameters of the CRFs, we use cross-validation [16, 31] to
learn the weights for the objects unary responses, attributes
unary responses, pairwise, and region-level responses.

3. Label Correlation Discovery
In this section, we describe a piecewise method for train-

ing the label correlation matrices, RA, ROA and ROAreg in
the model described. We train all matrices simultaneously
by learning an (n+m)2 correlation strength matrix (hence
treating the problem as a purely multi-label problem) and
then extracting the relevant sub-matrices.

Specifically, we use the modified Adaboost frame-
work of [28, 36] with multiple hypothesis reuse as de-
scribed in [30]. In training, we denote by D =
{(f1, z̄1), (f2, z̄2), . . . , (fN , z̄N )} a training dataset ofN in-
stances (i.e. pixels or regions), where fi is a feature vector
for the i-th instance derived from the image I (e.g. a bag
of words vector) and z̄i = [x̄i; ȳi] is an indicator vector of
length n + m, where x̄i(l) = 1 implies object l is associ-
ated with instance i, and x̄i(l) = −1 implies it is not, and
similarly for ȳi(a) = 1 for attribute a. z̄i is thus a vector
representation of a set of objects/attributes present at i.

In the description below, we focus on deriving the
attribute-attribute correlations, but the same approach is
used for deriving object-attribute correlations. The boost-
ing approach of [30] generates strong classifiers Ht,a(f)
for each attribute a and each round of boosting, t = 1...T .
These strong classifiers have the form:

Ht,a =
∑

t=1,...,T

αt,aht,a(f), (17)

where ht,a are weak classifiers, and αt,a are the non-
negative weights set by the boosting algorithm. Further,
the joint learning approach of [30] generates a sequence
of reuse weights βt,a1(Ht−1,a2) for each pair of attributes
a1, a2 at each iteration t. These represent the weight given
to the strong classifier for attribute a2 in round t − 1 in the
classifier for a1 at round t. Further, [30] show how these
quantities can be used to estimate the label correlation by
calculating:

R(a1, a2) =
∑

t=2...T

αt,a1(βt,a1(Ht−1,a2)

−βt,a1(−Ht−1,a2)). (18)

Learning the correlations this way incorporates both in-
formation about visual appearance similarities and co-
occurrence relationships between attributes and objects.

4. Datasets
We evaluate our approach using three datasets: the At-

tribute Pascal (aPASCAL) dataset [9], the Cross-category
Object REcognition (CORE) dataset [8], and the NYU in-
door V2 dataset [32]. In this paper we only use the RGB
images from the NYU dataset.

aNYU Dataset. Our first set of experiments is on the
RGB images from the NYU V2 dataset [32] 2. As shown
in Fig 3, we added 8 additional attribute labels, i.e.Wood,
Painted, Cotton, Glass, Glossy, Plastic, Shiny, and Textured.
We asked 3 annotators to assign material, surface property
attributes on each segmentation ground truth region. We
then adopted the majority votes from 3 annotators as our 8
additional attribute labels. We call this extended dataset the
attribute NYU (aNYU) dataset. This dataset has 1449 images
collected from 28 different indoor scenes. In our experi-
ments, we select 15 object classes and 8 attributes that have
sufficient numbers of instances to train the unary potential.
Further, we randomly split the dataset, into 725 images for
the training set, 100 for the validation set, and 624 for the
testing set.

CORE Dataset. Our second set of experiments is con-
ducted on the Cross-Category Object Recognition (CORE)
dataset [8]. This dataset comes with 1049 images and
ground truth segmentations for 27 object classes and 9 ma-
terial attributes. The “objects” set has 27 labels, of which
14 are animals and 13 are vehicles. The “material” set con-
tains nine different materials. Other images in the original
CORE dataset are not used because they contain no pixel-
level labels. In our experiments, we use 467 images to form
the training set, and the remaining 582 images to form a test
set. In the original CORE dataset experimental setting [8],
some object classes have no training samples. Hence, we
move some instances of those objects from test set to the
training set.

aPASCAL Dataset. The existing aPASCAL dataset [9]
is designed for bounding box level attributes. We trans-
fer the existing 64 bounding-box-level attribute labels to
our region-level attributes by finding the closest region seg-
ments from the image segmentation ground truth. We se-
lect 8 material attributes from 64 as pixel-level attributes,
as other attributes are not well-defined on the pixel-level.
Among the images in aPASCAL dataset, there are 517 hav-
ing segmentation ground-truth annotation for both object
classes and attributes. We use 191 for testing, and 326 for
training.

5. Experiments
Our approach is a hierarchical fully-connected CRF

model (HI). We compare our approach against the other

2http://cs.nyu.edu/˜silberman/datasets/nyu_
depth_v2.html
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Dataset Object Labels Pixel-level Labels Region-level Labels
Number Names Number Names Number Names

aNYU 15 Wall, Floor, Picture, Cabinet,... 8 Wood, Painted, Cotton, Glass,... 8 Wood, Painted, Cotton, Glass,...
CORE 27 Airplane, Alligator, Bat,... 9 Bare Metal, Feathers,... 9 Bare Metal, Feathers,..

aPASCAL 20 Aeroplane, Person, Bird, Cat,... 8 Skin, Metal, Plastic, Wood,... 64 2DBoxes, Round, Occluded,...

Figure 3. Annotation illustration. Extra annotation example and statistics on aNYU, CORE, and aPASCAL datasets. Best view in color.

state-of-the-art image segmentation approaches, includ-
ing per pixel TextonBoost unary potential [20, 31] (Tex-
ton), Pairwise CRF semantic image segmentation approach
(AHCRF [20]), Fully-connected CRF with detection and
super-pixel higher orders (Full-C [18, 38]), and Joint
attributes-objects Pixel-level fully-connected CRF (JP). JP
has the same setting with the proposed approach, but the
region-level terms are disabled. The problem of semantic
image segmentation for attributes is a multi-label problem
and these methods are not designed for dealing with it, so
we treat each as a binary one-vs-all label problem, with no
pairwise terms between them, in contrast to our method
in which we learn the important correlations between at-
tributes. We also conduct experiments to understand the
effect of each term in the proposed full model.

We choose the average intersection/union score as the
evaluation measure. This measure is adopted from VOC [7],
defined as TP / (TP + FP + FN). TP represents the true posi-
tive, and FP means false positive, and FN indicates the false
negative. We compute the average intersection/union score
across the attribute classes via summing up the intersec-
tion/union score for all the binary attribute segmentations
and then dividing by the number of attributes.

We have conducted comprehensive evaluation on three
datasets including aNYU, CORE, and aPASCAL. Compared
with 5 other methods, we observe that HI outperforms the
other approaches across all datasets, as illustrated in Fig. 4.
In Fig. 4, HI achieves higher performance than JP, indi-
cating that exchanging information between attributes and
objects at both levels helps to predict both types of vari-
able. Moreover, we observe a significant qualitative im-
provement, and we believe that a higher percentage increase
would be archived if the datasets had more finely labelled
data in the test set.

Effect of attribute terms. To clarify the effect of each

attribute term in Eq. 13, we report the performance of object
segmentation, using HI with different components being
disabled. We take the learned models and remove, in turn,
each type of attribute term (i.e. the joint attributes-objects
term, the joint attributes-attributes term, the attributes in
region level, and the attributes in pixel level), and report
the performance in Table 1. When we remove the per-
pixel attribute assignment, the object segmentation accu-
racy reduces by 5%, but when we remove the region-level
attributes, the accuracy reduces by 4.4%. This suggests per-
pixel attribute assignment is important to achieve higher ac-
curacy and finer segmentation.

Dataset
Average label-accuracy(%) for object segmentation

full model W/O pix-att W/O region-att W/O att
aNYU 61.4 56.4 57.0 51.3

Table 1. Effect of different terms in our model. We compare the
average object label-accuracy(%) of our full model without (W/O)
different components. “Full model” means the proposed approach,
the hierarchical semantic image segmentation for both objects and
attributes. “W/O pix-att” indicates the one without pixel-level at-
tribute terms, “W/O region-att” represents the one without region-
level attribute terms, and “W/O att” is the one without attribute
terms.

In addition, to understand the potential of using attributes
in helping semantic image segmentation, we evaluate the
performance improvement of HI by setting the attribute fac-
tors to the ground truth labels (as if we had a perfect at-
tribute CRF). Result shows 42% average label accuracy
improvement on the object class segmentation, compared
against the results of the proposed joint inference approach.
This suggests that there is still great potential in using at-
tributes towards semantic image segmentation.

Joint Inference Timings. All the experiments are car-
ried out on a machine with a Intel Xeon E5 − 2687W
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Dataset
Average intersection-union[7](%)

Object segmentation Attribute segmentation
Texton [20, 31] AHCRF [20] Full-C [18, 38] JP HI Texton [20, 31] AHCRF [20] Full-C [18, 38] JP HI

aNYU 17.4 20.0 18.9 20.8 22.0 8.90 10.1 10.0 14.4 15.1
CORE 17.5 17.6 17.5 19.1 20.1 15.6 17.0 17.4 17.5 17.8

aPASCAL 27.0 30.3 36.9 36.4 37.1 15.0 16.5 16.5 16.9 17.6

Figure 4. Quanlitative and quantitative results. Results on the aNYU, CORE [8] and aPASCAL [9] datasets. We compare 5 different
approaches: TextonBoost classifier (Texton [20, 31]), Pairwise CRF with detection and super-pixel higher orders (AHCRF [20]), Fully-
connected CRF with detection and super-pixel higher orders (Full-C [18, 38]), Joint Pixel-level CRF (JP), and Hierarchical CRF (HI). The
results are reported as average intersection-union [7]. We obtain the attribute unary potentials with multiple binary segmentation, using
the AHCRF [20] library. The attribute segmentation results for the method Full-C are obtained using Dense CRF inference based on these
attribute unary potentials. Best view in color.

(3.1GHz, 1600MHz) and 64.0GB. For the hierarchical
model, the straightforward implementation of the inference
takes on average 11 seconds per image on the aNYU dataset,
where the image size is 620× 460. This inference can eas-
ily be parallelized. By enabling OpenMP and optimizing the
implementation, the inference part can achieve 1.2 seconds
per 620× 460 image, on all 16 cores of the same machine.
Further speed boost can be achieved with GPU implementa-
tion.

6. Conclusions and Future Work

In this paper, we have proposed a joint approach to si-
multaneously predict the attribute and object class labels
for pixels and regions in a given image. The experiments
suggest that combining information from attributes and ob-
jects at region and pixel-levels helps semantic image seg-
mentation for both object classes and attributes. Further ex-
periments also show that per-pixel attribute segmentation is
important in achieving higher accuracy and finer semantic
segmentation results. In order to encourage future work on

the problem of semantic image segmentation with objects
and attributes, we expand the aNYU dataset by adding per-
pixel attribute annotation 3.

In the future work, we intend to consider allowing multi-
label object predictions as well as attributes, and combining
our piecewise learning approach to jointly learn all the pa-
rameters. We also plan to achieve the GPU implementation
for the proposed approach and generalize current approach
for 3D scenes understanding. It is possible to extend the set
of object and attribute labels and maintain efficiency by fol-
lowing Sturgess et al. [33]. We will continue expanding the
annotations and the data in the aNYU dataset.
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