Global Contrast based Salient Region Detection

Ming-Ming Cheng\(^1,4,5\) \hspace{1cm} Niloy J. Mitra\(^2\) \hspace{1cm} Xiaolei Huang\(^3\) \hspace{1cm} Philip H. S. Torr\(^4\) \hspace{1cm} Shi-Min Hu\(^1\)

\(^1\)TNList, Tsinghua University, \hspace{1cm} \(^2\)UCL/KAUST \hspace{1cm} \(^3\)Lehigh University \hspace{1cm} \(^4\)Oxford University \hspace{1cm} \(^5\)Nankai University

Abstract

Automatic estimation of salient object regions across images, without any prior assumption or knowledge of the contents of the corresponding scenes, enhances many computer vision and computer graphics applications. We introduce a regional contrast based salient object extraction algorithm, which simultaneously evaluates global contrast differences and spatial weighted coherence scores. The proposed algorithm is simple, efficient, naturally multi-scale, and produces full-resolution, high-quality saliency maps. These saliency maps are further used to initialize a novel iterative version of GrabCut for high quality salient object segmentation. We extensively evaluate our algorithm using popular benchmarks and demonstrate a variety of applications.

Core Idea: Region Based Contrast (RC)

Evaluation on MSRA 1000 Benchmark Dataset (Simple Images)

Challenging Benchmark: non-selected internet images

Robust Applications Design: automatically process many images + use efficient algorithms to select good results

SaliencyCut: Automatic salient region extraction

Enables automatic initialization provided by salient object detection.

Evaluation on MSRA 1000 Benchmark Dataset (Simple Images)

Challenging Benchmark: non-selected internet images

Robust Applications Design: automatically process many images + use efficient algorithms to select good results

Sketch Based Retrieval \([1,2,8]\)

Semantic Colorization \([4]\)

View selection \([5]\)

Image collage \([6]\)

Sketch Based Retrieval \([1,2,8]\)

Semantic Colorization \([4]\)

View selection \([5]\)

Image collage \([6]\)

\[S(r_k) = \sum_{r_k \neq r_i} \exp\left(-\frac{D_s(r_k, r_i)}{\sigma_s^2}\right) \omega(r_i) D_r(r_k, r_i) \]

Spatial weighting

Region size

Region contrast by sparse histogram comparison.

Input image

Sample Results

Saliency maps

Saliency cut

http://cg.cs.tsinghua.edu.cn/people/~cmm/

Evaluation on MSRA 1000 Benchmark Dataset (Simple Images)

Robust Applications Design: automatically process many images + use efficient algorithms to select good results

Sketch Based Retrieval \([1,2,8]\)

Semantic Colorization \([4]\)

View selection \([5]\)

Image collage \([6]\)

Challenging Benchmark: non-selected internet images

Evaluation on MSRA 1000 Benchmark Dataset (Simple Images)

Challenging Benchmark: non-selected internet images

Robust Applications Design: automatically process many images + use efficient algorithms to select good results

Sketch Based Retrieval \([1,2,8]\)

Semantic Colorization \([4]\)

View selection \([5]\)

Image collage \([6]\)

Evaluation on MSRA 1000 Benchmark Dataset (Simple Images)

Challenging Benchmark: non-selected internet images

Robust Applications Design: automatically process many images + use efficient algorithms to select good results

Sketch Based Retrieval \([1,2,8]\)

Semantic Colorization \([4]\)

View selection \([5]\)

Image collage \([6]\)

Training a generic objectness measure to produce a small set of candidate object windows, has been shown to speed up the classical sliding window object detection paradigm. We observe that generic objects with well-defined closed boundary can be discriminated by looking at the norm of gradients. Based on this observation, we propose to use a binarized normed gradients (BING) for efficient objectness estimation. Experiments on the PASCAL VOC 2007 dataset show that our method efficiently (300fps on a single laptop CPU) generates a small set of category-independent, high quality object windows, yielding 96.2% detection rate (DR) with 1,000 proposals. Increasing the numbers of proposals and color spaces for computing BING features, our performance can be further improved to 99.5% DR.

Normed gradients (NG) and objectness

Although object (red) and non-object (green) windows present huge variation in the image space (a), in proper scales and aspect ratios where they correspond to a small fixed size (b), their corresponding normed gradients, i.e. a NG feature (c), share strong correlation. We learn a single 64D linear model (d) for selecting object proposals based on their NG features.

Abstract

BING: Binarized Normed Gradients for Objectness Estimation at 300fps

Ming-Ming Cheng1 Ziming Zhang2 Wen-Yan Lin3 Philip H. S. Torr1

1Oxford University, 2Boston University 3Brookes Vision Group

BING:

Binarized Normed Gradients for Objectness Estimation at 300fps

Sample Results (true positives)

http://mmcheng.net/bing/

Algorithm 2 Get BING features for $W \times H$ positions.

Comments: see Fig. 2 for illustration of variables

Input: binary normed gradient map $b_{W \times H}$

Output: BING feature matrix $b_{W \times H}$

Initialize: $b_{W \times H} = 0, r_{W \times H} = 0$

for each position (x, y) in scan-line order do

$r_{x,y} = (r_{x-1,y} \leq 1) \mid b_{x,y}$

$b_{x,y} = (b_{x,y-1} \leq 8) \mid r_{x,y}$

end for

Experimental results on Challenging PASCAL VOC benchmark

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (seconds)</td>
<td>89.2</td>
<td>3.14</td>
<td>1.32</td>
<td>11.2</td>
</tr>
</tbody>
</table>

Table 1. Average computational time on VOC2007.

<table>
<thead>
<tr>
<th>BITWISE</th>
<th>FLOAT</th>
<th>INT, BYTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradient</td>
<td>Get BING</td>
<td>Get score</td>
</tr>
<tr>
<td>SHIFT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 2. Average number of atomic operations for computing objectness of each image window at different stages: calculate normed gradients, extract BING features, and get objectness score.