Research

BING: Binarized Normed Gradients for Objectness Estimation at 300fps

Ming-Ming Cheng1           Ziming Zhang2        Wen-Yan Lin3           Philip Torr1

1The University of Oxford     2Boston University      3Brookes Vision Group

Abstract

Training a generic objectness measure to produce a small set of candidate object windows, has been shown to speed up the classical sliding window object detection paradigm. We observe that generic objects with well-defined closed boundary can be discriminated by looking at the norm of gradients, with a suitable resizing of their corresponding image windows in to a small fixed size. Based on this observation and computational reasons, we propose to resize the window to 8 × 8 and use the norm of the gradients as a simple 64D feature to describe it, for explicitly training a generic objectness measure.

We further show how the binarized version of this feature, namely binarized normed gradients (BING), can be used for efficient objectness estimation, which requires only a few atomic operations (e.g. ADD, BITWISE SHIFT, etc.). Experiments on the challenging PASCAL VOC 2007 dataset show that our method efficiently (300fps on a single laptop CPU) generates a small set of category-independent, high quality object windows, yielding 96.2% object detection rate (DR) with 1,000 proposals. Increasing the numbers of proposals and color spaces for computing BING features, our performance can be further improved to 99.5% DR.

Papers

  1. BING: Binarized Normed Gradients for Objectness Estimation at 300fps, Ming-Ming Cheng, Yun Liu, Wen-Yan Lin, Ziming Zhang, Paul L. Rosin, Philip H. S. Torr, Computational Visual Media 5(1):3-20, 2019. [Project page][pdf][bib] (Extention of CVPR 2014 Oral)
  2. BING: Binarized Normed Gradients for Objectness Estimation at 300fps. Ming-Ming Cheng, Ziming Zhang, Wen-Yan Lin, Philip Torr, IEEE CVPR, 2014. [Project page][pdf][bib][C++][Latex][PPT, 12 min] [Seminar report, 50 min] [Poster] [Spotlight, 1 min] (Oral, Accept rate: 5.75%)

Most related projects on this website

  • SalientShape: Group Saliency in Image Collections. Ming-Ming Cheng, Niloy J. Mitra, Xiaolei Huang, Shi-Min Hu. The Visual Computer 30 (4), 443-453, 2014. [pdf] [Project page] [bib] [latex] [Official version]
  • Efficient Salient Region Detection with Soft Image Abstraction. Ming-Ming Cheng, Jonathan Warrell, Wen-Yan Lin, Shuai Zheng, Vibhav Vineet, Nigel Crook. IEEE International Conference on Computer Vision (IEEE ICCV), 2013. [pdf] [Project page] [bib] [latex] [official version]
  • Global Contrast based Salient Region Detection. Ming-Ming Cheng, Niloy J. Mitra, Xiaolei Huang, Philip Torr, Shi-Min Hu. IEEE TPAMI, 2014. [Project page] [Bib] [Official version] (2nd most cited paper in CVPR 2011)

Spotlights Video (17MB Video, pptx)

Figure.  Tradeoff between #WIN and DR (see [3] for more comparisons with other methods [6, 12, 16, 20, 25, 28, 30, 42] on the same benchmark). Our method achieves 96.2% DR using 1,000 proposals, and 99.5% DR using 5,000 proposals. ResBING

Table 1. Average computational time on VOC2007.

TimingBING

Table 2. Average number of atomic operations for computing objectness of each image window at different stages: calculate normed gradients, extract BING features, and get objectness score.

SampleBING

Figure.  Illustration of the true positive object proposals for VOC2007 test images.

Downloads

     The C++ source code of our method is public available for download. An OpenCV compatible VOC 2007 annotations could be found here. 由于VOC网站在中国大陆被墙,我们提供了一个镜像下载链接:百度网盘下载, 镜像下载Matlab file for making figure plot in the paper. Results for VOC 2007 (75MB). We didn’t apply any patent for this system, encouraging free use for both academic and commercial users.

Links to most related works:

  1. Measuring the objectness of image windows. Alexe, B., Deselares, T. and Ferrari, V. PAMI 2012.
  2. Selective Search for Object Recognition, Jasper R. R. Uijlings, Koen E. A. van de Sande, Theo Gevers, Arnold W. M. Smeulders, International Journal of Computer Vision, Volume 104 (2), page 154-171, 2013
  3. Category-Independent Object Proposals With Diverse Ranking, Ian Endres, and Derek Hoiem, PAMI February 2014.
  4. Proposal Generation for Object Detection using Cascaded Ranking SVMs. Ziming Zhang, Jonathan Warrell and Philip H.S. Torr, IEEE CVPR, 2011: 1497-1504.
  5. Learning a Category Independent Object Detection Cascade. E. Rahtu, J. Kannala, M. B. Blaschko, IEEE ICCV, 2011.
  6. Generating object segmentation proposals using global and local search, Pekka Rantalankila, Juho Kannala, Esa Rahtu, CVPR 2014.
  7. Efficient Salient Region Detection with Soft Image Abstraction. Ming-Ming Cheng, Jonathan Warrell, Wen-Yan Lin, Shuai Zheng, Vibhav Vineet, Nigel Crook. IEEE ICCV, 2013.
  8. Global Contrast based Salient Region Detection. Ming-Ming Cheng, Niloy J. Mitra, Xiaolei Huang, Philip Torr, Shi-Min Hu. IEEE TPAMI, 2014. (2nd most cited paper in CVPR 2011).
  9. Geodesic Object Proposals. Philipp Krähenbühl and Vladlen Koltun, ECCV, 2014.

Suggested detectors:

The proposals needs to be verified by detector in order to be used in real applications. Our proposal method perfectly match the major speed limitation of the following stage of the art detectors (please email me if you have other suggestions as well):

  1. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation, R. Girshick, J. Donahue, T. Darrell, J. Malik, IEEE CVPR (Oral), 2014. (Code; achieves best ever reported performance on PASCAL VOC)
  2. Fast, Accurate Detection of 100,000 Object Classes on a Single Machine, CVPR 2013 (best paper).
  3. Regionlets for Generic Object Detection, ICCV 2013 oral. (Runner up Winner in the ImageNet large scale object detection challenge)

Recent methods

  1. Data-driven Objectness, IEEE TPAMI, in print.

Applications

If you have developed some exciting new extensions, applications, etc, please send a link to me via email. I will add a link here:

Third party resources.

If you have made a version running on other platforms (Software at other platforms, e.g. Mac, Linux, vs2010, makefile projects) and want to share it with others, please send me an email containing the url and I will add a link here. Notice, these third party versions may or may not contain updates and bug fix, which I provided in the next section of this webpage for easier updates.

  • Linux version of this work provided by Shuai Zheng from the University of Oxford.
  • Linux version of this work provided by Dr. Ankur Handa from the University of Cambridge.
  • Unix version of this work provided by Varun from University of Maryland.
  • OpenCV version (doc) of this work by Francesco Puja et al.
  • Matlab version of this work by Tianfei Zhou from Beijing Institute of Technology
  • Matlab version (work with 64 bit Win7 & visual studio 2012) provided by Jiaming Li from University of Electronic Science and Technology of China(UESTC).

Bug fix

  • 2014-4-11: There was a bug in Objectness::evaluatePerImgRecall(..) function. After update, the DR-#WIN curve looks slightly better for high value of #WIN. Thanks YongLong Tian and WangLong Wu for reporting the bug.

FAQs

Since the release of the source code 2 days ago, 500+ students and researchers has download this source code (according to email records). Here are some frequently asked questions from users. Please read the FAQs before sending me new emails. Questions already occurred in FAQs will not be replied.

1. I download your code but can’t compile it in visual studio 2008 or 2010. Why?

I use Visual Studio 2012 for develop. The shared source code guarantee working under Visual Studio 2012. The algorithm itself doesn’t rely on any visual studio 2012 specific features. Some users already reported that they successfully made a Linux version running and  achieves 1000fps on a desktop machine (my 300fps was tested on a laptop machine). If users made my code running at different platforms and want to share it with others, I’m very happy to add links from this page. Please contact me via email to do this.

2. I run the code but the results are empty. Why?

Please check if you have download the PASCAL VOC data (2 zip files for training and testing  and put them in ./VOC2007/). The original VOC annotations could not directly be read by OpenCV. I have shared a version which is compatible with OpenCV (https://mmcheng.net/code-data/). After unzip all the 3 data package, please put them in the same folder and run the source code.

3. What’s the password for unzip your source code?

Please read the notice in the download page. You can get it automatically by supplying your name and institute information.

4. I got different testing speed than 300fps. Why?

If you are using 64bit windows, and visual studio 2012, the default setting should be fine. Otherwise, please make sure to enable OPENMP and native SSE instructions. In any cases, speed should be tested under release mode rather than debug mode. Don’t uncomments commands for showing progress, e.g. printf(“Processing image: %s”, imageName). When the algorithm runs at hundreds fps, printf, image reading (SSD hard-disk would help in this case), etc might become bottleneck of the speed. Depending on different hardware, the running speed might be different. To eliminate influence of hard disk image reading speed, I preload all testing images before count timing and do predicting. Only 64 bit machines support such large memory for a single program. If you RAM size is small, such pre-loading might cause hard disk paging, resulting slow running time as well. Typical speed people reporting ranging from 100fps (typical laptop) ~ 1000fps (pretty powerful desktop).

5. After increase the number of proposals to 5000, I got only 96.5% detection rate. Why?

Please read through the paper before using the source code. As explained in the abstract, ‘With increase of the numbers of proposals and color spaces … improved to 99:5% DR’. Using three different color space can be enabled by calling “getObjBndBoxesForTests” rather than the default one in the demo code “getObjBndBoxesForTestsFast”.

6. I got compilation or linking errors like: can’t find “opencv2/opencv.hpp”, error C1083: can’t fine “atlstr.h”.

These are all standard libraries. Please copy the error message and search at Google for answers.

7. Why linear SVMs, gradient magnitudes? These are so simple and alternatives like *** could be better and I got some improvements by doing so. Some implementation details could be improve as well.

Yes, there are many possibilities for improvement and I’m glad to hear people got some improvements already (it is nice to receive these emails). Our major focus is the very simple observation about things vs. stuff distinction (see section 3.1 in our CVPR14 paper). We try to model it as simple and as efficient as possible. Implementation details are also not guaranteed to be optimal and there are space to improve (I’m glad to receive such suggestions via email as well).

8. Like many other proposal methods, the BING method also generates many proposal windows. How can I distinguish between the windows I expect from others. 

Like many other proposal methods (PMAI 2012, IJCV 2013, PAMI 2014, etc.), the number of proposals typically goes to a few thousands. To get the real detection results, you still need to apply a detector. A major advantage of the proposal methods is that the detector can ignore most (up to 99%) image windows in traditional sliding window pipeline, but still be able to check 90+% object windows. See the ‘Suggested detectors‘ section on this webpage for more details.

9. Is there any step by step guidance of using the source code?

Please see the read me document for details about where to download data, where to put the files, and advice for getting maximal speed.

10. Could you give a detailed step by step example of how to get binary normed gradient map from normed gradient map?

The simple method of getting binary normed gradients (binary values) from normed gradients (BYTE values) is described in detail in Sec. 3.3 of our CVPR 2014 paper (the paragraph above equation 5). Here is a simple example to help understanding. E.g. the binary representation of a BYTE value 233 is 11101001. We can take its top 4 bits 1110 to approximate the original BYTE values. If you want to recover the BYTE value from the 4 binary bits 1110, you will get an approximate value 224.

11. Is there any intuitive explanation of the objectness scores, i.e. s_l in equation (1) and O_l in equation (3) ?

The bigger value these scores are, it is more likely to be an object window. Although BING feature is a good feature for getting object proposals, its still not good enough to produce object detection results (see also FAQ 8). We can consider the number of object windows as a computation budget, and we want high recall within this budget. Thus we typically select top n proposals according to these scores, even the score might be negative value (not necessary means a non-object window).  The value s_l means how good the window match with the template. The o_l is the score after calibration in order to rank proposals from more likely size (e.g. 160*160) higher than proposals from less likely size (e.g 10*320). The calibration parameters can be considered as a per size bias terms.

12. Typos in the project page, imperfect post reply, miss-spelled English words in the C++ source code, email not replied, etc.

I apologies for my limited language ability. Please report to me via personal emails if you found such typos, etc. It would also be more than welcome if you can simply repost if I missed to reply some of the important information.

I’m a careless boy and forgot to reply some of the emails quite often. If you think your queries or suggestions are important but not get replied in 5 working days, please simply resent the email.

13. Problem when running to the function format().

Some user suffered from error caused by not be able to correctly format() function in the source code. This is an standard API function of OpenCV. Notice that proper version of OpenCV needs to be linked. It seems that the std::string is not compatible with each other across different versions of Visual studio. You must link to appropriate version of it. Be care with the strange name mapping in visual studio: Visual studio 2005 (VC8), Visual studio 2008 (VC9), Visual studio 2010 (VC10), Visual studio 2012 (VC11), Visual studio 2013 (VC13).

14. What’s the format of the returned bounding boxes and how to illustrate the  boxes as in the paper.

We follow the PASCAL VOC standard bounding boxes definition, i.e. [minX, minY, maxX, maxY]. You can refer the Objectness::illuTestReults() function for how the illustration was done.

15. Discussions in CvChina

There are 400+ disscusions about this projects in http://www.cvchina.info/2014/02/25/14cvprbing/ (in Chinese). You may find answers to your problems there.

Locations of visitors to this page

 

(Visited 146,462 times, 1 visits today)
Subscribe
Notify of
guest

329 Comments
Inline Feedbacks
View all comments
李文斌

你好,程教授。我使用objNess.getObjBndBoxesForTests()函数和VOC2007测试了你的BING代码,效果很好。但是我逐步使用MIT street scene数据集的图片替换掉VOC 2007的图片后,程序可以正常运行,但是检测效果很差。感觉BING程序没有提取到新图片的特征。

Carrie

程老师您好,我有一个问题,就是预测生成proposal的用时和测试图像的大小有关吗?

Carrie

恩,知道了,谢谢老师

Tina

HELLO 你好 程老师 我用Win32跑的您的代码 在第一阶段训练成功 但到了第二阶段提示 Asserttion failed 《wr,size==size(2,1)》 在objectness,cpp 489行不知道是什么原因导致的

Tina

恩 说的是not enough training sample for r【0】=0.p=0 是数据集的问题吗没有读取到数据 我是在您给的镜像网址上面下的啊

xiaoling

程老师您好,请问一下将xml转换为yml格式的代码在哪里呢,下载的项目代码里面只看到了yml.m和xml2yaml.m文件

xmz

程老师您好,BING算法在做测试的时候是首先对每张待测图像整体resize到不同的尺寸,然后求resize后图像的BING特征,再然后是将哪块区域resize成8*8得到64D的BING特征呢?这块的处理没太看明白,希望得到老师的指点

xmz

程老师您好,我用VS2012可以运行BING程序,但是用F5调试的时候出现MSVSMON未启动的问题,是什么原因呢?

xmz

谢谢老师,已解决~

徐君妍

程明明老师,你好,我想运用BING里面的方法实现自己图片中目标框的提取,但图像标注只能产生xml文件,而您的代码只支持对yml格式的annotation的读入,对吗?我要怎么样将xml格式文件转换为yml文件?

lmmiguel

Hello you all
I was reading your work guys and I found it very interesting; It is not clear to me how you choose where to pick the 8×8 patch onto the NG maps.
Did you pick the 8×8 patch pixeles like some convolution style? I mean you choose the 8×8 patch moving thorough the resized image ???

Regards

xuzhe

I wonder what does the condition “height > imgH * _base” in predictBBoxSI function (Objectness.cpp) mean? why * _base ? What if the base is not 2?

David

Hi, I run Matlab version (work with 64 bit Win7 & visual studio 2012) provided by Jiaming Li, the Mex is successful, and the three new mexw64 files are created, however, when I run Example_BINGSingle.m in matlab, it said cannot find the Example_BINGSingle mexw64 file. I am using Matlab 2015a + opencv3.0.0, is there anyone know how to solve it?? Thanks.

Leisus

Hi David,could u please tell me how to set the path of training data and testing data? i found in main.cpp, but i use the windows 7 the symbol is / or \? i already download all the code and the database, i already tried every possible path but it still cannot work, my environment is vs 2012 +opencv3.0 and itself works well.

fqjabc

程老师您好,请问以下代码会引起内存泄漏吗?我在debug下可以跑通,换到release就报错了,经过定位,是这个函数有问题

void DataSetVOC::loadAnnotations()
{
gtTrainBoxes.resize(trainNum);
gtTrainClsIdx.resize(trainNum);
string fName = format(_S(annoPathW), _S(trainSet[0]));
for (int i = 0; i < trainNum; i++)
if (!loadBBoxes(trainSet[i], gtTrainBoxes[i], gtTrainClsIdx[i]))
return;

gtTestBoxes.resize(testNum);
gtTestClsIdx.resize(testNum);
for (int i = 0; i < testNum; i++)
if(!loadBBoxes(testSet[i], gtTestBoxes[i], gtTestClsIdx[i]))
return;
printf("Load annotations finished\n");
}

一直提醒:堆已损坏

leo_xu

程老师您好,我看了您的代码和论文,有个问题:resize的大小必须是8*8吗,如果图像窗口不是resize到8*8大小而是其他尺度,比如说是16*8或者16*9,那么paper里面的通过bitwise方法是不是就失效了,或者说我们需要通过改变数据存储格式及相应的bitwise操作,比如采用INT64的数组来进行修改,来加速其他尺度的情况?您在说明中提到了,采用的是最简单的特征,那么如果我们采用其他稍微复杂些的特征,就不一定能保证8*8的大小,或者说如果说要保持8*8大小有可能会影响特征的实际性能。希望程老师看到了能解答下,非常感谢!

fqjabc

程老师,我在debug模式下运行没有问题。一换到release模式下马上就提醒“在已损坏了程序内部状态的 Objectness.exe 中发生了缓冲区溢出。按“中断”以调试程序,或按“继续”以终止程序。”
请问这是不是你之前说的“为了统计时间,预先把所有图片先导进内存”所引起的?如果是,请问怎样解决?谢谢啦

junxi

程老师你好,我在做人拿危险物(刀棍)的检测,利用了你的objectness做人和危险物的初步定位,效果非常好,但现在问题是我无法将人和刀棍分开,容易将人身体的一部分识别成刀或者棍。我利用的是svm训练,在刀棍的负样本中加入了人身体的一部分(手,腰,腿),刀的正样本中没出现人作为背景,但效果依然很糟糕,hog,lbp特征都试过了,图像大小是128*128.有什么指点的么?在线等,急!!!

fqjabc

程老师,DataSetVOC程序里的“CV_Assert_(clsIdx[clsIdx.size() – 1] >= 0, (“Invalidate class name\n”));”这句有没有问题啊?运行时会提示“堆栈 Cookie 检测代码检测到基于堆栈的缓冲区溢出”?把这句注释掉又出现“堆以损坏”的问题。
现在我换一台电脑,和之前的配置步骤一模一样,却运行不了,晕了,就为了配这个耗了几天

fqjabc

为啥我之前运行很正常,现在换另一台电脑上按照一样的配置结果就出现问题:(在 Objectness.exe 中)“ 堆栈 Cookie 检测代码检测到基于堆栈的缓冲区溢出”。
把DataSetVOC程序里的“CV_Assert_(clsIdx[clsIdx.size() – 1] >= 0, (“Invalidate class name\n”));”注释掉后再运行又出现“Objectness.exe 已触发了一个断点”。这个问题

诶,vs平台的真麻烦,求帮助啊

陈滨

请问运行速度慢原因是?得到的结果为:
Load annotations finished
Dataset:`D:/BingObjectnessCVPR14/VOC2007/’ with 2501 training and 4952 testing
WinRecall.m Base = 2, W = 8, NSS = 2, perSz = 130
Learning stage I takes 51.613 seconds…
Learning stage II takes 1166.55 seconds…
Start predicting
Average time for predicting an image is 0.46309s
1:0.249,0.303

硬件配置I5-2400 16G win 7 64位,vs2012 opencv2.4.8,代码未做任何修改。。。

Ibrahima

Thanks for trying to provide the code, but we are not able to make it run. This is very unfortunate, as this looks like a promising method, but for practical reasons we now have to use the edgeBoxes code. Please see below for details.
Followed all the instructions given, but still can’t run the code.
1) class.txt under ImageSets/Main is empty and prompting the assertion error: “Invalidate Class name”
2) After I manually create the class.txt with the below lines, I get a heap error when exiting the loadBoxes function.
aeroplane
bicycle
bird
boat
bottle
bus
car
cat
chair
cow
diningtable
dog
horse
motorbike
person
pottedplant
sheep
sofa
train
tvmonitor

fqjabc

I meet the same problem when I add the class.txt in the Main folder. The VS2012 also prompts a heap error. Have you solved it now?

June

Have you solved that problem?

June

I also met the same problem. Have you solved that problem?

xuzhe

gentlemen,are you guys using the linux version by Shuai Zheng?
in file cmFile.cpp, func loadStrList(CStr&), I believe a line “line.resize(sz – 1); ” should be commented.

wenwen

我在运行程序时出了这些问题,有哪位大神可以告诉我,该怎么弄吗?谢谢。
“Objectness.exe”(Win32): 已加载“E:\voc\x64\Release\Objectness.exe”。已加载符号。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\ntdll.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\kernel32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\KernelBase.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\opencv_world300.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\user32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\gdi32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\lpk.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\usp10.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\msvcrt.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\ole32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\rpcrt4.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\oleaut32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\comdlg32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\shlwapi.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\winsxs\amd64_microsoft.windows.common-controls_6595b64144ccf1df_5.82.7601.18837_none_a4d981ff711297b6\comctl32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\advapi32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\sechost.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\shell32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\msvfw32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\winmm.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\avifil32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\msacm32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\avicap32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\version.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\msvcp120.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\msvcr120.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\msvcp140.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\vcruntime140.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\api-ms-win-crt-runtime-l1-1-0.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\ucrtbase.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\api-ms-win-core-timezone-l1-1-0.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\api-ms-win-core-file-l2-1-0.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\api-ms-win-core-localization-l1-2-0.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\api-ms-win-core-synch-l1-2-0.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\api-ms-win-core-processthreads-l1-1-1.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\api-ms-win-core-file-l1-2-0.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\api-ms-win-crt-string-l1-1-0.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\api-ms-win-crt-heap-l1-1-0.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\api-ms-win-crt-stdio-l1-1-0.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\api-ms-win-crt-convert-l1-1-0.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\api-ms-win-crt-locale-l1-1-0.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\api-ms-win-crt-math-l1-1-0.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\api-ms-win-crt-multibyte-l1-1-0.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\api-ms-win-crt-time-l1-1-0.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\api-ms-win-crt-filesystem-l1-1-0.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\api-ms-win-crt-environment-l1-1-0.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\api-ms-win-crt-utility-l1-1-0.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\vcomp140.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\imm32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\msctf.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\nvinitx.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Program Files\NVIDIA Corporation\coprocmanager\_etoured.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Program Files\NVIDIA Corporation\coprocmanager\Nvd3d9wrapx.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\setupapi.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\cfgmgr32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\devobj.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Program Files\NVIDIA Corporation\coprocmanager\nvdxgiwrapx.dll”。无法查找或打开 PDB 文件。
0x000007FEFCDBB3DD 处(位于 Objectness.exe 中)引发的异常: Microsoft C++ 异常: cv::Exception,位于内存位置 0x000000000023EDA0 处。
0x000007FEFCDBB3DD 处(位于 Objectness.exe 中)有未经处理的异常: Microsoft C++ 异常: cv::Exception,位于内存位置 0x000000000023EDA0 处。

程序“[4768] Objectness.exe”已退出,返回值为 -1073741510 (0xc000013a)。

Yang0

请问您这个问题解决了吗?我也遇到了类似的问题。

Yang0

请问您这个问题解决了吗?我也遇到了类似的问题。“Objectness.exe”(Win32): 已加载“D:\VS2012code\code2\x64\Release\Objectness.exe”。已加载符号。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\ntdll.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\kernel32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\KernelBase.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“D:\opencv2.4.8\build\x64\vc11\bin\opencv_core248.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\msvcp110.dll”。已加载符号。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\msvcr110.dll”。已加载符号。
“Objectness.exe”(Win32): 已加载“D:\opencv2.4.8\build\x64\vc11\bin\opencv_highgui248.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\user32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\gdi32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\lpk.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\usp10.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\msvcrt.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\ole32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\rpcrt4.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\oleaut32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\advapi32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\sechost.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\winsxs\amd64_microsoft.windows.common-controls_6595b64144ccf1df_5.82.7601.18201_none_a4d3b9377117c3df\comctl32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\msvfw32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\winmm.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\shell32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\shlwapi.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\avifil32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\msacm32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\avicap32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\version.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“D:\opencv2.4.8\build\x64\vc11\bin\opencv_imgproc248.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\vcomp110.dll”。已加载符号。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\imm32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\msctf.dll”。无法查找或打开 PDB 文件。
First-chance exception at 0x000007FEFD46B3DD in Objectness.exe: Microsoft C++ exception: cv::Exception at memory location 0x000000000030EDD0.
Unhandled exception at at 0x000007FEFD46B3DD in Objectness.exe: Microsoft C++ exception: cv::Exception at memory location 0x000000000030EDD0.
Objectness.exe 已触发了一个断点。

Yang0

请问您这个问题解决了吗?我也遇到了类似的问题。
“Objectness.exe”(Win32): 已加载“D:\VS2012code\code2\x64\Release\Objectness.exe”。已加载符号。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\ntdll.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\kernel32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\KernelBase.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“D:\opencv2.4.8\build\x64\vc11\bin\opencv_core248.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\msvcp110.dll”。已加载符号。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\msvcr110.dll”。已加载符号。
“Objectness.exe”(Win32): 已加载“D:\opencv2.4.8\build\x64\vc11\bin\opencv_highgui248.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\user32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\gdi32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\lpk.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\usp10.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\msvcrt.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\ole32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\rpcrt4.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\oleaut32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\advapi32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\sechost.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\winsxs\amd64_microsoft.windows.common-controls_6595b64144ccf1df_5.82.7601.18201_none_a4d3b9377117c3df\comctl32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\msvfw32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\winmm.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\shell32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\shlwapi.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\avifil32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\msacm32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\avicap32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\version.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“D:\opencv2.4.8\build\x64\vc11\bin\opencv_imgproc248.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\vcomp110.dll”。已加载符号。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\imm32.dll”。无法查找或打开 PDB 文件。
“Objectness.exe”(Win32): 已加载“C:\Windows\System32\msctf.dll”。无法查找或打开 PDB 文件。
First-chance exception at 0x000007FEFD46B3DD in Objectness.exe: Microsoft C++ exception: cv::Exception at memory location 0x000000000030EDD0.
Unhandled exception at at 0x000007FEFD46B3DD in Objectness.exe: Microsoft C++ exception: cv::Exception at memory location 0x000000000030EDD0.
Objectness.exe 已触发了一个断点。

zk

必须在X64下运行啊

wenwen

我在运行时,刚运行没有几秒,就弹出了:E:\voc\BingObjectnessCVPR14\x64\Debug\Objectness.exe abort() has been called,对话框,程序就结束运行了,请问各位大神,这要怎么解决?谢谢了。(我把VOC2007_AnnotationsOpenCV_Readable这个压缩包也解压到BingObjectnessCVPR14\voc2007\里面了,这个有问题吗?)