Research

DEL: Deep Embedding Learning for Efficient Image Segmentation

Yun Liu1, Peng-Tao Jiang1Vahan Petrosyan2, Shi-Jie Li1Jiawang Bian3Le Zhang4Ming-Ming Cheng1

1Nankai University        2KTH Royal Institute of Technology        3University of Adelaide        4Advanced Digital Sciences Center

Abstract

Image segmentation has been explored for many years and still remains a crucial vision problem. Some efficient or accurate segmentation algorithms have been widely used in many vision applications. However, it is difficult to design a both efficient and accurate image segmenter. In this paper, we propose a novel method called DEL (deep embedding learning) which can efficiently transform superpixels into image segmentation. Starting with the SLIC superpixels, we train a fully convolutional network to learn the feature embedding space for each superpixel. The learned feature embedding corresponds to a similarity measure that measures the similarity between two adjacent superpixels. With the deep similarities, we can directly merge the superpixels into large segments. The evaluation results on BSDS500 and PASCAL Context demonstrate that our approach achieves a good trade-off between efficiency and effectiveness. Specifically, our DEL algorithm can achieve comparable segments when compared with MCG but is much faster than it, i.e. 11.4fps vs. 0.07fps.

Papers

  • DEL: Deep Embedding Learning for Efficient Image Segmentation, Yun Liu, Peng-Tao Jiang, Vahan Petrosyan, Shi-Jie Li, Jiawang Bian, Le Zhang, and Ming-Ming Cheng, IJCAI-ECAI, 2018. [Project page] [pdf] [bib] [Source code]

We have released the code and data for plotting the edge PR curves of many existing image segmentation and edge detection methods here.

Algorithm Pipeline

Network Architecture

Superpixel Merging

Evaluation on BSDS500 Dataset

Evaluation on PASCAL Context Dataset

(Visited 5,142 times, 1 visits today)
Subscribe
Notify of
guest

10 Comments
Inline Feedbacks
View all comments
wongtyu

您好,我也想问下threshold和minsize分别是多少,能得出论文中,ods和ois的Fb和Fop的结果,还有一个问题,论文验证用的代码是seism代码呢,还是bsds500数据集里的benchmark的代码,感觉回复

xuji

您好,请问一下threshold和minsize分别应为多少才可以得到论文中的结果呢?

wangkai

刘老师,我是天大的学生。我看着您的代码中del\examples\del目录下的train.prototxt中有superpixel pooling这一层,但是test.prototxt没有superpixel pooling这一层。如果没有pooling这一层,网络是怎样产生superpixel feature vectors的呢?

Wangby

为了方便学习,本人下载了代码,由于本是刚刚研究深度学习,不知道代码中MATLAB文件夹所包含的哪一个文件是用来执行DEL算法的?关于如何执行此算法,希望老师能给予一定的指导!谢谢

Wangby

非常感谢刘老师的回复,您是说运行examples/del/solve.py文件吧!这个文件我运行后得到了不同阈值下一系列的.mat结果,打开某个.mat文件,得到一个矩阵,这些矩阵的元素是图像原超像素的某些标号,对吗?我不知道我运行的结果对不对,希望刘老师给予一定的指导,谢谢!

shuo

程老师,可以公开DEL的源码吗?

wangkai

刘老师,请问DEL训练时superpixelpooling层和SimilarityLoss层输入的sp_label必须是同一个sp_label吗?谢谢老师