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1 SALIENT OBJECT DETECTION

1.1 PR and F-measure Curves
We show the comparisons of PR and F-measure curves among
seven state-of-the-art salient object detection methods, PoolNet-
V+ and PoolNet-R+ on five datasets in Fig. 1. As can be seen,
the PR and F-measure curves by PoolNet-R+ (solid red ones) are
more outstanding compared to all other previous approaches. Even
the PoolNet-V+ (solid cyan ones), which utilizes a less powerful
backbone, still performs comparably to the other methods. Specif-
ically, in the top row of Fig. 1, as the recall scores approach 1,
our precision scores are much higher than other methods. This
phenomenon reveals that the false positives in our saliency map
are low, and the detected salient objects are more integral, which is
essential for salient object detection approaches. This conclusion
can also be drawn from the bottom row of Fig. 1, where the F-
measure curves of our approach are more convex.

2 GENERALIZATION TO OTHER TASKS

This section investigates the generalization ability of the proposed
approach by applying it to two popular related low-level vision
tasks, including RGB-D salient object detection and camouflaged
object detection.

2.1 RGB-D Salient Object Detection
2.1.1 Related Work
RGB-D salient object detection aims at predicting the most visu-
ally prominent objects or regions in an RGB-D image. Previous
RGB-D salient object detection methods mainly relied on hand-
crafted saliency priors of the RGB and depth maps [1], [2].
Deep-learning-based methods rise in recent years with the flourish
of CNNs. Early deep methods [3], [4] combined the manually
designed contrast cues with the multi-scale features extracted
by CNNs. Recent deep methods directly utilized the raw RGB-
D images in an end-to-end scheme. [5] made predictions by
combining side outputs of the backbone network. [6] progres-
sively integrated RGB and depth features extracted by respective
independent networks. To better utilize the depth information,
[7] transferred the architecture designed for RGB images to
fuse the depth representation. Based on the contrast prior, [8]
introduced the idea of complementary information into the RGB
feature extractor by fusing enhanced depth features. [9] leveraged
cross-modal interactions to diversify the fusion ways to address

the insufficient combination between RGB and depth features.
[10] designed a three-stream attention-aware network to select
complementary representations effectively. [11] used residual con-
nections to extract and fuse multi-level paired complementary cues
from RGB and depth streams. [12] integrated multiple attention
strategies to propagate contexts accurately. [13] extended a simple
general structure for cross-modal feature learning.

2.1.2 Implementation Details
To meet the input format of RGB-D salient object detection,
which takes in an RGB image along with the corresponding depth
image, we add a sequence of five 1 × 1 convolutional layers to
extract the depth information based on PoolNet-R+ to build our
RGB-D model. We follow [14], [15] and directly fuse features
from the RGB and depth branches of the corresponding stages for
simplicity. We use the Adam [16] optimizer with an initial learning
rate of 1e-4 and a batch size of 10. Our network is trained for 200
epochs, and the learning rate is divided by 10 for every 60 epochs.
We use the joint set, including 1485 samples from NJU [17] and
700 samples from NLPR [18], for model training as commonly
done [6], [11], [15]. In addition to the rest images in NJU and
NLPR, the STERE [19], DES [20], and SIP [21] sets are used for
testing. In both training and testing phases, the input images are
resized to 352× 352. We employ the same four metrics as salient
object detection for performance evaluation.

2.1.3 Comparisons to the State-of-the-Arts
The quantitative comparisons of our approach with ten previous
state-of-the-art methods are shown in Table 1. We could see that
our approach surpasses all the other methods on all five datasets in
terms of all three metrics. Compared to the previous best method,
D3Net [13], our approach outperforms it with average promotions
of 2.1%, 1.5%, and 2.2% in F-measure, MAE, and S-measure,
respectively, across all five datasets. It is noteworthy that the num-
bers of parameters and MAdds of our approach are the smallest in
both terms. Additionally, we plot the PR and F-measure curves in
Fig. 2. As can be seen, the curves obtained by our approach (red
ones) are particularly more convex than the rest ones. Unlike most
of the previous methods that usually utilize a heavy independent
network playing the role of depth feature extraction, our approach
requires only several convolutional layers, i.e., 0.18M additional
parameters and 0.12G additional MAdds in this case. We attribute
this to the powerful feature extraction capability of the proposed
PoolNet-R+, in which case the supplementary depth features
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MLMS JDFPR PAGE AFNet PoolNet-V+ PiCANet CPD CSNet PoolNet-R+
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(a) ECSSD [22] (b) PASCAL-S [23] (c) DUT-OMRON [24] (d) HKU-IS [25] (e) DUTS-TE [26]

Fig. 1. PR and F-measure curves on five salient object detection datasets. Top: precision (vertical) recall (horizontal) curves. Bottom: F-measure
(vertical) and threshold (horizontal) curves. We show results using two different backbone networks: VGG-16 and ResNet-50, which correspond to
PoolNet-V+ and PoolNet-R+, respectively. Our curves are better than those of other state-of-the-art methods.

Method
Params MAdds NJU [17] STERE [19] DES [20] NLPR [18] SIP [21]

(M) (G) Fβ ↑ MAE ↓ Sm ↑ Fβ ↑ MAE ↓ Sm ↑ Fβ ↑ MAE ↓ Sm ↑ Fβ ↑ MAE ↓ Sm ↑ Fβ ↑ MAE ↓ Sm ↑
DF17 [3] - - 0.829 0.141 0.763 0.788 0.141 0.757 0.796 0.093 0.752 0.817 0.085 0.802 0.703 0.185 0.653
CTMF18 [7] - - 0.858 0.085 0.849 0.848 0.064 0.875 0.865 0.055 0.863 0.841 0.056 0.860 0.718 0.139 0.715
PCF18 [6] 133.40 - 0.888 0.059 0.877 - - - - - - 0.888 0.044 0.874 - - -
AFNet19 [27] - - 0.805 0.100 0.772 0.848 0.075 0.825 0.775 0.068 0.770 0.816 0.058 0.799 0.756 0.118 0.720
MMCI19 [9] - - 0.869 0.079 0.858 0.877 0.068 0.873 0.838 0.065 0.848 0.841 0.059 0.856 0.839 0.082 0.813
TANet19 [10] 232.45 - 0.889 0.060 0.878 0.878 0.060 0.871 0.853 0.046 0.858 0.877 0.041 0.886 0.854 0.075 0.835
CPFP19 [8] 69.50 - - - - 0.891 0.051 0.879 0.883 0.038 0.872 0.892 0.031 0.899 0.873 0.064 0.850
DMRA19 [11] 59.66 - 0.896 0.051 0.886 0.867 0.066 0.835 0.906 0.035 0.883 0.888 0.031 0.899 0.852 0.085 0.806
S2MA20 [12] 86.65 108.22 0.899 0.058 0.887 0.895 0.051 0.890 - - - 0.912 0.030 0.916 0.893 0.057 0.872
D3Net20 [13] 45.23 55.17 0.905 0.051 0.893 0.898 0.054 0.889 0.917 0.033 0.898 0.904 0.033 0.905 0.885 0.063 0.864
PoolNet-R+ 34.30 14.15 0.932 0.033 0.921 0.920 0.035 0.912 0.934 0.019 0.924 0.922 0.023 0.921 0.905 0.049 0.881

Table 1
Quantitative RGB-D salient object detection results on five widely used datasets. As can be seen, our approach achieves the best results on all

five datasets in terms of F-measure, MAE, and S-measure.

DF AFNet CTMF MMCI TANet DMRA D3Net PoolNet-R+
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Fig. 2. PR and F-measure curves on five RGB-D salient object detection datasets. Top: precision (vertical) recall (horizontal) curves. Bottom:
F-measure (vertical) and threshold (horizontal) curves.
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Method
Params MAdds CHAMELEON [28] CAMO [29] COD10K [30]

(M) (G) Fβ ↑ Sm ↑ Eϕ ↑ Fw
β ↑ MAE ↓ Fβ ↑ Sm ↑ Eϕ ↑ Fw

β ↑ MAE ↓ Fβ ↑ Sm ↑ Eϕ ↑ Fw
β ↑ MAE ↓

FPN17 [31] 36.32 16.84 0.749 0.794 0.783 0.590 0.075 0.681 0.684 0.677 0.483 0.131 0.600 0.697 0.691 0.411 0.075
MaskRCNN17 [32] - - 0.647 0.643 0.778 0.518 0.099 0.567 0.574 0.715 0.430 0.151 0.511 0.613 0.748 0.402 0.080
PSPNet17 [33] 46.71 37.47 0.747 0.773 0.758 0.555 0.085 0.656 0.663 0.659 0.455 0.139 0.575 0.678 0.680 0.377 0.080
UNet++18 [34] 36.63 105.70 0.632 0.695 0.762 0.501 0.094 0.557 0.599 0.653 0.392 0.149 0.499 0.623 0.672 0.350 0.086
PiCANet18 [35] 47.22 54.06 0.777 0.769 0.749 0.536 0.085 0.596 0.609 0.584 0.356 0.156 0.587 0.649 0.643 0.322 0.090
MSRCNN19 [36] - - 0.671 0.637 0.686 0.443 0.091 0.653 0.617 0.669 0.454 0.133 0.605 0.641 0.706 0.419 0.073
BASNet19 [37] 87.06 97.48 0.633 0.687 0.721 0.474 0.118 0.584 0.618 0.661 0.413 0.159 0.504 0.634 0.678 0.365 0.105
PFANet19 [38] 16.29 27.82 0.602 0.679 0.648 0.378 0.144 0.631 0.659 0.622 0.391 0.172 0.549 0.636 0.618 0.286 0.128
HTC19 [39] - - 0.502 0.517 0.489 0.204 0.129 0.432 0.476 0.442 0.174 0.172 0.505 0.548 0.520 0.221 0.088
CPD19 [40] 47.85 - 0.824 0.853 0.866 0.706 0.052 0.724 0.726 0.729 0.550 0.115 0.669 0.747 0.770 0.508 0.059
EGNet19 [41] 111.66 120.85 0.830 0.848 0.870 0.702 0.050 0.733 0.732 0.768 0.583 0.104 0.683 0.737 0.779 0.509 0.056
PoolNet-R+ 34.12 14.03 0.828 0.838 0.887 0.723 0.042 0.761 0.750 0.785 0.620 0.095 0.718 0.754 0.800 0.559 0.049

Table 2
Quantitative camouflaged object detection results on three widely used datasets. As can be seen, our approach achieves the best results on

almost all datasets in all five metrics.
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Fig. 3. PR and F-measure curves on three camouflaged object detec-
tion datasets. Left: precision (vertical) recall (horizontal) curves. Right:
F-measure (vertical) and threshold (horizontal) curves.

extracted by a few convolutional layers are sufficient enough to
make good predictions. We argue that designing more powerful
depth feature extracting branches or more advanced cross-modal
feature integration strategies between the RGB and depth branches
can further promote the performances. The above phenomenon
shows that our proposed approach can adapt and perform well
even when transferred and applied to a task that takes input data
from different domains. It verifies the generalization ability and
robustness of the proposed approach.

2.2 Camouflaged Object Detection

2.2.1 Related Work
Unlike salient object detection that aims to detect the most
attractive objects, camouflaged object detection intends to discover
the camouflaged objects hidden in the surrounding. Early research

in camouflaged object detection [42]–[45] can be traced decades
ago. [46] pointed out that the colors of camouflaged objects are
similar to their backgrounds and the boundaries between them
and the background are ambiguous. [47] simulated the visual
angle of predators to discover the hidden targets by combining
the noteworthy features of camouflaged objects. [30] built a large-
scale benchmark and proposed a deep network to solve this
problem effectively. [48] introduced contradictory features and
designed a similarity feature module for better detecting the salient
and camouflaged targets.

2.2.2 Implementation Details
Like salient object detection, camouflaged object detection also
takes RGB images as input and makes binary predictions. To this
end, we directly apply the proposed PoolNet-R+ for camouflaged
object detection without network modification. Following [30],
we use the stochastic gradient descent (SGD) optimizer with a
momentum of 0.9 and weight decay of 5e-5 for optimization. We
train our network for 32 epochs with a batch size of 30. The initial
learning rate is set to 5e-3, and the warming-up and cosine updat-
ing schedules are applied. Random horizontal flipping and crop-
ping are used for data augmentation. The network is trained on the
training subset of COD10K [30]. For testing, CHAMELEON [28],
CAMO [29], and the testing subset of COD10K [30] are used. In
both training and testing phases, the input images are resized to
352×352. We use six metrics for evaluation, including PR curves,
F-measure (Fβ), S-measure (Sm), E-measure (Eϕ), weighted F-
measure (Fw

β ), and mean absolute error (MAE).

2.2.3 Comparisons to the State-of-the-Arts
We compare our approach with 11 state-of-the-art methods numer-
ically in Table 2. One can see that our approach achieves the best
results on three widely used datasets in terms of almost all metrics.
Specifically, though the F-measure and S-measure scores of our
approach on the CHAMELEON [28] dataset (76 test images) do
not rank first, the performances of ours on the larger COD10K [30]
dataset (2026 test images) outperform the previous state-of-the-art
methods by large margins. This phenomenon could better demon-
strate the effectiveness of our approach. As for the consumption of
computational resources, only the parameters of PFANet [38] are
lower than ours. However, PFANet [38] performs much worse
than our approach (averagely more than 17%, 12%, and 19%
in terms of F-measure, S-measure, and E-measure, respectively)
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and requires 98% more MAdds. Compared to the previous best-
performing method, our approach still averagely outperforms
about 2% in F-measure and E-measure, while requiring only 30%
and 12% parameters and MAdds, respectively. Similar phenomena
can be observed in the PR and F-measure curves that our approach
(red) is more outstanding than the others, as shown in Fig. 3. The
above experimental results show that our approach performs well
when applied to a task with a very different purpose (i.e., salient
v.s. camouflaged), verifying our approach’s good generalization
ability and robustness.
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