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Abstract

Connectedness of random walk segmentation is examined, and novel
properties are discovered, by considering electrical circuits equivalent to
random walks. A theoretical analysis shows that earlier conclusions con-
cerning connectedness of random walk segmentation results are incorrect,
and counterexamples are demonstrated.
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1 Introduction

The random walk algorithm proposed by Grady [1] is a leading method for seeded
image segmentation. In this graph-based algorithm, edge weights denote the like-
lihood that a random walk will cross that edge. For each pixel (node), the proba-
bility is computed of a random walk starting at it first reaching each seed in turn.
These probabilities are compared, and the pixel given the same label as the seed
with greatest probability. (Multiple seeds may share the same label). An impor-
tant property given by Grady’s paper is that each segmented region is guaranteed
to be connected to one or more seeds with that region’s label: isolated regions
without seeds do not occur. This is important, as it implies that the random walk
approach avoids the noisy or fragmented segmentations that can sometimes result
from other algorithms. Unfortunately, as we show here, this property does not
always hold. We give a counterexample in Section 2 and a theoretical analysis
in Section 3.

2 Counterexample and explanation

First, we give a specific counterexample, showing that the connectedness property
does not always hold. Figure 1 shows the random walk segmentation result of a
color image containing 4 regions (RI , RU , RL, and RO), starting from 4 seeds of
3 types (sU , sL, and sO). The segmentation result is consistent with the image
information, where all four regions of different color are separated. However, this
is a counterexample to the connectedness proposition in [1] since the region RI

output by the segmentation does not contain any seed points. To see why this
arises, we consider the image and seeds in more detail; readers should refer to
Grady’s original paper for an explanation of the algorithm. Let D(R1, R2) be
the color difference between regions R1 and R2. In this image, D(RI , RU) =
D(RI , RL)� D(RU , RL)� D(RU , RO) = D(RL, RO). Further, let UO and LO be
the probability that a random walk starting at the center point of RI first reaches
seed type sO via region RU or RL respectively. We experimentally observe that
UU − UO > UO − UL > 0, which also matches with intuition. Thus UO + LO =
2UO > UU +UL = UU +LU = LL +UL (equality due to symmetry), i.e. the center
point should be labeled the same as sO. This gives an intuitive understanding of
how isolated regions containing no seeds may occur, if the user fails to place an
adequate number of seeds in suitable places.
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Figure 1: A counterexample: (a) input image containing 4 regions, and 4 seeds
of 3 types; (b) random walk segmentation result; probability of a random walk
starting at each pixel first reaching seed type sU (c) or sO (d).

3 Theoretical Analysis

We now consider where Grady’s proof of connectedness breaks down. Following
his notation, let xsi be the probability of a random walk starting at node i first
arriving at a seed labelled s. In Proposition 1 of [1], although ∀f 6= s,∃i such
that xsi > xfi , i can be different for each f . The proof of this proposition fails
to show that any connected subset of unseeded nodes assigned to segmentation s
must contain at least one seed labeled s. (Nevertheless, this proposition does hold
if there are only two seed types, which is a special result of our Observation 1 in
Section 3).

One may ask whether we can make some simple amendments, such as changing
the assignment rule, to fix this problem. The answer is ‘No’. To show this, we
analyze the random walk problem using an equivalent electrical circuit network.
We further assume that the algorithm works on general graphs, and generalize the
segmentation problem to a special convex hull partition problem (Observation 1).
Then we show step by step (Proposition 1-5) that for any segmented graph which
satisfies the connectedness property and has more than 3 label types, even allowing
the algorithm to have more general weighting (Proposition 4) and assignment rule
(Proposition 5), it is still possible to replace some part of it in a way which makes
the connectedness property fail. Finally, Proposition 5 provides a condition under
which random walk segmentation is guaranteed to give a connected result.

According to [2], a random walk graph has an equivalent electrical circuit
network with conductances equal to the edge weights, and voltage sources replacing
seed points. In this circuit network, the probability xsi is equal to the voltage at
i if we give the seeds labeled s unit potential and other seeds zero potential. For
a passive sub-network (PSN; without voltage sources) X of the circuit, we denote
its boundary nodes as N(X) = {yk}. Here boundary nodes are those outside X,
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having at least one neighbor within X; X comprises the nodes it contains, the
conductance associated with these nodes, and the conductance between boundary
nodes. Let the probabilities of a random walk starting at node p first reaching a
seed of type S = {s1, · · · , sm} be a vector xp = [xs1p , · · · , xsm

p ].

Observation 1. For each node p in X, xp =
∑

k λ
k
pxyk

, λkp ≥ 0,
∑

k λ
k
p = 1, and

the weights λkp are uniquely determined by X. Let the vector be λp = [· · · , λkp, · · · ].

Using a circuit network analogy, each PSN X can be represented by a con-
ductance matrix H (uniquely determined by X; see Proposition 1 for a detailed
expression). The conductance matrix H for a circuit represents the linear relation
between the inward current and boundary voltage, I = HU , where I and U are
vectors formed by concatenating inward current and boundary voltage values at
boundary nodes, and H is determined by the structure of the circuit network. If
no output nodes are connected by zero resistance (infinite conductance), H is well-
defined. To prove Proposition 3, we first analyze some properties (Proposition 1,
2) of the conductance matrix H:

Proposition 1. Assuming there are M boundary points, H = {hij}M×M has the
following properties:

1. Symmetry: HT = H.

2. Zero sum: HlM×1 = 0, where the vector l has all elements 1.

3. Sign: hij ≥ 0 for i = j and hij ≤ 0 for i 6= j.

Proof. If C the M ×M Laplacian matrix for boundary nodes, UX the inner volt-
ages, B the n×M negative connection matrix for connections between inner nodes
and the boundary, and L is the n× n matrix for the inner nodes, Ohm’s Law and
Kirchhoff’s Rules give

I = CU − diag(BT l)U +BTUX , LUX +BU = 0

Thus, UX = −L−1BU . It follows that I = (− diag(BT l)−BTL−1B+C)U. Hence:

1. H = − diag(BT l)−BTL−1B+C = − diag(BT l)T − (BTL−1B)T +CT = HT .

2. Using the fact that Ll + B = 0, Cl = 0, we have Hl = −(diag(BT l) +
BTL−1B)l = −BT l −BTL−1Bl = −BT l +BT l = 0.

3. We have BT l ≤ 0, L−1 ≥ 0, so − diag(BT l) ≥ 0,−BTL−1B ≤ 0. Thus
cij ≥ 0 for i = j and cij ≤ 0 for i 6= j, so property 3 follows from property 2.
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Proposition 2. For any H satisfying Proposition 1, we can construct a PSN with
conductance matrix H.

Proof. The proof is simple—we just connect boundary nodes. For boundary nodes
i and j, we add an edge with weight (conductance) −hij. It is easy to check that
the conductance matrix is H. Note that no inner nodes are created, and such a
matrix corresponds to C in the proof of Proposition 1.

Proposition 3. Given a conductance matrix H = {hij}M×M and a set of vectors
{λw} satisfying λkw ≥ 0,

∑
k λ

k
w = 1, and (hij = 0) ⇒ (λiw · λjw = 0) for each

i < j, we can construct a PSN X with conductance matrix H, containing nodes
{w} which has vectors {λw}.

Proof. For each vector λw, we add an inner node w; for each boundary node i,
we add an edge ew,i between w and i, with weight αwλ

i
w (where αw is a positive

constant associated with w, to be determined later). Note that when λiw = 0,
the creation of ew,i is not needed. The conductance matrix associated with ew,i is
Hw = {hw,ij}M×M , where

hw,ij =

{
−αwλiwλjw, i 6= j∑

k 6=i−hw,ik, i = j
.

Now, Hw is a valid conductance matrix, and limαw→0Hw = 0. Thus, it is easy
to check that small enough positive numbers {αw}n exist such that HS = H −∑

wHw is still a valid conductance matrix. After constructing a PSN for HS as in
Proposition 2, we get a PSN consisting of n + 1 parts (n are created for vectors,
and one is created by connecting to boundary nodes as in Proposition 2). These
parts do not share nodes in the interior, so the overall conductance matrix is∑

wHw +HS = H. Each node w has vector λw.

From basic electrical circuit principles, if a PSN is replaced by another with
the same conductance matrix, other parts of the circuit network are not affected.
Proposition 3 shows that if X is a connected graph, for any set of voltages inside
the convex hull of voltages of N(X), we can design another sub-network X ′ to
replace X, such that voltage and current at every node of the rest of the circuit
does not change, and the nodes of X ′ give the set of specified voltages.

Proposition 4. For a graph (circuit network), in which each node (pixel) i is
associated with a ‘color’ ci (scalar or vector), the weight for edge eij is given by
g(ci − cj), where the continuous function g : V → R+ satisfies g(c) = g(−c), and
lim‖c‖→∞ g(c) = 0. Given a set of vectors as in Proposition 3, we can replace a
PSN X by another PSN X ′, without changing other parts of the circuit network.
The new network contains nodes with the given vectors and has the same weighting
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Figure 2: An example of counterexample construction: initial seeds are shown in
color in (a) and the determined image colors and final pixel labels are shown in
(c).

function (edge weights are uniquely determined by the ‘color’ of each edge’s two
end nodes).

Proof. We can replace X by X ′ to construct desired vectors while keeping the
conductance matrix unchanged using a similar approach to that in Proposition 3.
To construct ‘colors’ so that edges agree with the weighting function g, ci for a
newly created node i is firstly random initialized. For each edge eij 6= g(ci − cj),
let

wij =
g(0)g(ci − cj)
g(0) + g(ci − cj)

.

If eij < wij, we create another node j′ with color c′j, remove edge eij, and connect
i, j′ and j′, j. The equivalent weight is h(c′j) = g(ci − c′j)g(c′j − cj)/(g(ci − c′j) +
g(c′j − cj)). Note that h(ci) = wij > eij and lim‖c′j‖→∞ g(c′j) = 0, so ∃c′j ∈ V such

that h(c′j) = eij, i.e. the network remains unaltered. If eij > wij, let k = beij/wijc,
remove edge eij and create k nodes with color ci, each connected to node i and j.
If eij − kwij > 0, we create a node as above with weight h(c′j) = eij − kwij. The
total equivalent weight is just eij.

Proposition 4 suggests that even in normal color based graph segmentation
(the edge weights are determined by ‘color’ differences between nodes), counter
examples can still be easily constructed by replacing a sub-network by another.

Figure 2(a) shows a small example which meets the connectedness property,

with x
{c,e,g}
f = {0.55, 0.4, 0.05} and x

{c,e,g}
h = {0.05, 0.4, 0.55}. While x

{c,e,g}
i =

{0.3, 0.4, 0.3} lies inside the convex hull of {xf , xh}, it does not belong to the same
seed as either xh or xf . It can be constructed by replacing the PSN in (a) (only
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Figure 3: Convex sets separation example

containing the edge with weight 0.5) by another according to Proposition 3. Fig-
ure 2(c), constructed according to Proposition 4, is the image part corresponding
to the counterexample in Figure 2(b).

From the above, we can design the interior voltages of a connected sub network
provided that they lie inside the convex hull of voltages of the boundary.

Observation 2. We define a segmentation to be a map f from the vector space
{xp} to segmentation identifier—i.e., the segmentation is a partition of the convex
hull generated by voltages at seed points. The segmentation method in [1] is thus
a special case of segmentation, with xsi

having ith value 1, and other values 0,
and f(xp) = arg maxi(x

i
p). Note that f is ill-defined when arg maxi(x

i
p) has more

than one value. Generally, such points have zero measure in the Euclidean space
containing the convex hull generated by voltages at seed points; the convex hull
has positive volume. Suppose the convex hull of seed voltages C is partitioned into
{Ci}1×m, with each Ci corresponding to a label type xsi

∈ Ci, and having positive
volume. For Grady’s connectivity statement to be true, it requires that, for any
{sik} ⊂ S,

⋃
Cik is convex.

Proposition 5. The requirement in Observation 2 cannot be satisfied for m ≥ 3.

Proposition 5 shows that Grady’s proof holds only for the two-label case, in
which the line segment with end points xs1 , xs2 is partitioned into two segments
at the midpoint (xs1 + xs2)/2.

Proof. Let the interior of Ci be Ci and the closure of Ci be C̄i. Suppose {Ci}1×m
satisfies the requirements in Observation 2 and m ≥ 3. It is easy to show that Ci is
convex and {C̄i} still satisfies the requirements in Observation 2. Then, according
to the separation theorem of convex sets, there exist hyperplanes P1,P2, separating
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C1, C2, C3 as shown in in Figure 3, and Pi ∪ Cj = ∅, i = 1, 2, j = 1, 2, 3. We choose
Pi ∈ Ci, i = 1, 2, 3, andK1 = P1P2∩P1, K2 = P2P3∩P2, where PiPj denotes the line
segment with end points Pi and Pj. We choose a sequence, W1,W2, · · · ,Wn · · · ,
satisfying Wn ∈ P1K1,Wn 6= K1, and Wn → K1. Note that C̄1 ∪ C̄2 is convex,
and Wn ∈ C̄1 ∪ C̄2. As Wn 6∈ C̄2, we have Wn ∈ C̄1. The closedness of C̄1 implies
that K1 ∈ C̄1. Similarly, K2 ∈ C̄3. But obviously, the interior of segment K1K2,
(λK1 + (1 − λ)K2) 6∈ C̄1 ∪ C̄3, 0 < λ < 1. This contradicts the requirement of
convexity of C̄1 ∪ C̄3.

4 Conclusion

We have given a counterexample to disprove Grady’s assertion concerning the
connectedness of segmentations produced by random walk [1]. Further theoretical
discussions show that the original assertion is not true in its most general form.
Despite this deficit, experiments on many real world images do result in connected
segmentations—random walk segmentation is indeed a powerful tool in many sit-
uations. Our discussion gives a new way to understand the structure of random
walk segmentations, and what users can expect from random walk segmentation.
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