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Figure 1: Different salient object detection (SOD) tasks. (a) Traditional SOD [75]. (b) Within-image co-salient object
detection (CoSOD) [89], where common salient objects are detected from a single image. (c) Existing CoSOD, where salient
objects are detected according to a pair [51] or a group [81] of images with similar appearances. (d) The proposed CoSOD
in the wild, which requires a large amount of semantic context, making it more challenging than existing CoSOD.

Abstract
Co-salient object detection (CoSOD) is a newly emerg-

ing and rapidly growing branch of salient object detection
(SOD), which aims to detect the co-occurring salient ob-
jects in multiple images. However, existing CoSOD datasets
often have a serious data bias, which assumes that each
group of images contains salient objects of similar visual
appearances. This bias results in the ideal settings and
the effectiveness of the models, trained on existing datasets,
may be impaired in real-life situations, where the similarity
is usually semantic or conceptual. To tackle this issue, we
first collect a new high-quality dataset, named CoSOD3k,
which contains 3,316 images divided in 160 groups with
multiple level annotations, i.e., category, bounding box, ob-
ject, and instance levels. CoSOD3k makes a significant leap
in terms of diversity, difficulty and scalability, benefiting re-
lated vision tasks. Besides, we comprehensively summarize
34 cutting-edge algorithms, benchmarking 19 of them over
four existing CoSOD datasets (MSRC, iCoSeg, Image Pair
and CoSal2015) and our CoSOD3k with a total of ∼61K
images (largest scale), and reporting group-level perfor-
mance analysis. Finally, we discuss the challenge and fu-
ture work of CoSOD. Our study would give a strong boost
to growth in the CoSOD community. Benchmark toolbox
and results are available on our project page.

1. Introduction

RGB Salient object detection (SOD) [6,18,46,90], RGB-
D SOD [22, 25, 98, 103], and Video SOD [23] have been
an active [29, 49, 71, 101] research field in computer vi-
sion community over the past decade. SOD mimics the
human vision system to detect the most attention-grabbing
object(s) from individual image, as shown in Fig. 1 (a). As
a branch, co-salient object detection (CoSOD) was emerged
recently to employ a set of images, which has been attract-
ing growing attention (see Tab. 2) due to its application val-
ues in collection-aware crops [34], co-segmentation [77],
weakly supervised learning [100], image retrieval [11], im-
age quality assessment [78], and video foreground detec-
tion [24], etc.

The goal of CoSOD is to extract the salient object(s) that
are common among image(s), such as the red-clothed foot-
ball player or blue-clothed gymnast, in Fig. 1 (b & c). To
address this problem, current models tend to focus only on
the appearance-similarity between objects. However, this
would lead to data selection bias and is not always appro-
priate, since, in real-life applications, salient objects in a
group of images often vary in terms of texture, color, scene,
and background (see our CoSOD3k dataset in Fig. 1 (d)),
even if they belong to the same category.

To take a deeper look at CoSOD, we make three distinct
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Figure 2: Sample images from our CoSOD3k dataset. It has rich annotations, i.e., image-level category (top), bounding boxes, object-level
mask, instance-level mask. Our CoSOD3k would provide a solid foundation for the CoSOD task and benefit a wide range of related fields,
e.g., co-segmentation, weakly supervised localization. Please refer to the supplementary materials for details. Zoom-in for the best view.

contributions:

• First, we construct a challenging CoSOD3k dataset,
with more realistic settings. Our CoSOD3k is the
largest CoSOD dataset to date, with two aspects: 1)
it contains 13 super-classes, 160 groups and 3,316 im-
ages in total, where each super-class is carefully se-
lected to cover diverse scenes; 2) each image is ac-
companied by category, bounding box, object-level,
and instance-level annotations, benefiting various vi-
sion tasks, as shown in Fig. 2.

• Second, we present the first large-scale co-salient
object detection study, reviewing 34 state-of-the-art
(SOTA) models, evaluating 19 of them on four existing
CoSOD datasets [4,51,81,93], as well as the proposed
CoSOD3k. A convenience benchmark toolbox is pro-
vided to integrate various publicly available CoSOD
datasets and multiple CoSOD metrics to enable conve-
nient performance evaluation.

• Finally, based on our comprehensive evaluation re-
sults, we observe several interesting findings and dis-
cuss several important issues for future researches.
Our research serves as a potential catalyst for promot-
ing large-scale model development and comparison.

2. Related Work

Datasets. Currently, only a few CoSOD datasets have
been proposed [4, 11, 51, 81, 89, 93], as shown in Tab. 1.
MSRC [81] and Image Pair [51] are two of the earliest ones.
MSRC was designed for recognizing object classes from im-
ages and has spurred many interesting ideas over the past
several years. This dataset includes 8 image groups and 240
images in total, with manually annotated pixel-level ground
truth data. Image Pair, introduced by Li et al. [51], is
specially designed for image pairs and contains 210 images

Dataset Year #Gp #Img #Avg IL Ceg BBx HQ Input
MSRC [81] 2005 8 240 30 Group images
iCoSeg [4] 2010 38 643 17 X Group images

Image Pair [51] 2011 105 210 2 Two images
THUR15K [11] 2014 5 15k 3k Group images
CoSal2015 [93] 2015 50 2,015 40 X Group images

WICOS [89] 2018 364 364 1 X Single image
CoSOD3k(Ours) 2020 160 3,316 21 X X X X Group images

Table 1: Statistics of existing CoSOD datasets and the proposed
CoSOD3k, showing that CoSOD3k provides higher-quality and
much richer annotations. #Gp: number of image groups. #Img:
number of images. #Avg: number of average image per group.
HQ: high-quality annotation. IL: whether or not instance-level
annotations are provided. Ceg: whether or not category labels are
provided for each group. BBx: whether or not provide bounding
box labels are provided for each image.

(105 groups) in total. The iCoSeg [4] dataset was released
in 2010. It is a relatively larger dataset consisting of 38
categories with 643 images in total. Each image group in
this dataset contains 4 to 42 images, rather than only 2 im-
ages like in the Image Pair dataset. The THUR15K [11]
and CoSal2015 [93] are two large-scale publicly available
datasets, and the CoSal2015 is widely used for assessing
CoSOD algorithms. Different from the above mentioned
datasets, the WICOS [89] dataset aims to detect co-salient
objects from single image, where each image can be viewed
as one group.

Although the aforementioned datasets have advanced the
CoSOD to various degrees, they are severely limited in va-
riety, with only dozens of groups. On such small-scale
datasets, the scalability of methods cannot be fully eval-
uated. Moreover, these datasets only provide object-level
labels. None of them provide rich annotations such as, cate-
gories, bounding boxes, instances, etc., which are important
for progressing many vision tasks and multi-task modeling.



# Model Pub. Year #Training Training Set Main Component SL. Sp. Po. Ed. Post.
1 WPL [34] UIST 2010 Morphological, Translational Alignment U
2 PCSD [10] ICIP 2010 120,000 8*8 image patch sparse feature [30], Filter Bank W
3 IPCS [51] TIP 2011 Ncut, co-multilayer Graph U X
4 CBCS [24] TIP 2013 Contrast/Spatial/Corresponding Cue U
5 MI [50] TMM 2013 Feature/Images Pyramid, Multi-scale Voting U X GCut
6 CSHS [59] SPL 2013 Hierarchical Segmentation, Contour Map [3] U X
7 ESMG [54] SPL 2014 Efficient Manifold Ranking [84], OTSU [64] U
8 BR [7] MM 2014 Common/Center Cue, Global Correspondence U X
9 SACS [8] TIP 2014 Self-adaptive Weight, Low Rank Matrix U X

10 DIM‡ [92] TNNLS 2015 1,000 + 9,963 ASD [1] + PV SDAE model [92], Contrast/Object Prior S X
11 CODW‡ [94] IJCV 2016 ImageNet [16] pre-train SermaNet [67], RBM [5], IMC, IGS, IGC W X X
12 SP-MIL‡ [96] TPAMI 2017 (240+643)*10% MSRC-V1 [81] + iCoseg [4] SPL [97], SVM, GIST [69], CNNs [9] W X
13 GD‡ [79] IJCAI 2017 9,213 MSCOCO [55] VGGNet16 [68], Group-wise Feature S
14 MVSRCC‡ [87] TIP 2017 LBP, SIFT [61], CH, Bipartite Graph X X
15 UMLF [27] TCSVT 2017 (240 + 2015)*50% MSRC-V1 [81] + CoSal2015 [94] SVM, GMR [86], metric learning S X

16 DML‡ [53] BMVC 2018 10,000 +
6,232 + 5,168 M10K [12] + THUR-15K [11] + DO CAE, HSR, Multistage S

17 DWSI [89] AAAI 2018 EdgeBox [106], Low-rank Matrix, CH S X
18 GONet‡ [33] ECCV 2018 ImageNet [16] pre-train ResNet-50 [28], Graphical Optimization W X CRF
19 COC‡ [31] IJCAI 2018 ImageNet [16] pre-train ResNet-50 [28], Co-attention Loss W X CRF
20 FASS‡ [105] MM 2018 ImageNet [16] pre-train DHS [56]/VGGNet, Graph optimization W X
21 PJO [73] TIP 2018 Energy Minimization, BoWs U X

22 SPIG‡ [35] TIP 2018 10,000+210
+2015+240

M10K [12]+IPCS [51] +
CoSal2015 [94] + MSRC-V1 [81] DeepLab, Graph Representation S X

23 QGF [36] TMM 2018 ImageNet [16] pre-train Dense Correspondence, Quality Measure S X THR
24 EHL‡ [70] NC 2019 643 iCoseg [4] GoogLeNet [72], FSM S X
25 IML‡ [65] NC 2019 3624 CoSal2015 [94] + PV + CR VGGNet16 [68] S X
26 DGFC‡ [80] TIP 2019 >200,000 MSCOCO [55] VGGNet16 [68], Group-wise Feature S X

27 RCANet‡ [44] IJCAI 2019 >200,000 MSCOCO [55] + COS + iCoseg [4]
+ CoSal2015 [94] + MSRC [81] VGGNet16 [68], Recurrent Units S THR

28 GS‡ [74] AAAI 2019 200,000 COCO-SEG [74] VGGNet19 [68], Co-category Classification S
29 MGCNet‡ [37] ICME 2019 Graph Convolutional Networks [42] S X
30 MGLCN‡ [38] MM 2019 N/A N/A VGGNet16, PiCANet [57], Inter-/Intra-graph S X
31 HC‡ [45] MM 2019 N/A N/A VAE-Net [41], Hierarchical Consistency S X X CRF
32 CSMG‡ [99] CVPR 2019 25,00 MB [58] VGGNet16 [68], Shared Superpixel Feature S X
33 DeepCO3‡ [32] CVPR 2019 10,000 M10K [12] SVFSal [95] / VGGNet [68], Co-peak Search W X
34 GWD‡ [43] ICCV 2019 >200,000 MSCOCO [55] VGGNet19 [68], RNN, Group-wise Loss S THR

Table 2: Summary of 34 classic and cutting-edge CoSOD approaches. Training set: PV = PASCAL VOC07 [17]. CR = Coseg-Rep [15].
DO = DUT-OMRON [86]. COS = COCO-subset. Main Component: IMC = Intra-Image Contrast. IGS: Intra-Group Separability. IGC:
Intra-Group Consistency. SPL: Self-paced learning. CH: Color Histogram. GMR: Graph-based Manifold Ranking. CAE: Convolutional
Auto Encoder. HSR: High-spatial Resolution. FSM: five saliency model including CBCS [24], RC [12], DCL [49], RFCN [76], DWSI [89].
SL. = Supervise Level. W = Weakly-supervised. S = Supervised. U = Unsupervised. Sp.: Whether or not superpixel techniques are used.
Po.: Whether or not proposal algorithms are utilized. Ed.: Whether or not edge features are explicitly used. Post.: Whether or not post-
processing methods, such as, CRF, GraphCut (GCut), or adaptive/constant threshold (THR), are introduced. ‡ denotes deep models. More
details about these models can be found in two survey papers [14, 91].

Traditional Methods. Previous CoSOD studies [8, 27,
51, 73] have found that the inter-image correspondence
can be effectively modeled by segmenting the input im-
age into many computational units (e.g., superpixel regions
[102], or pixel clusters [24]). A similar observation can
be found in recent reviews [14, 91]. In these approaches,
heuristic characteristics (e.g., contour [59], color, lumi-
nance) are extracted from images, and the high-level fea-
tures are captured to express the semantic attributes in dif-
ferent ways, such as through metric learning [27] or self-
adaptive weighting [8]. Several studies have also investi-
gated how to capture inter-image constraints through vari-
ous computational mechanisms, such as translational align-
ment [34], efficient manifold ranking [54], and global cor-
respondence [7]. Some methods (e.g., PCSD [10], which
only uses a filter bank technique) do not even need to per-
form the correspondence matching between the two input
images, and are able to achieve CoSOD before the focused
attention occurs.

Deep learning Methods. Deep CoSOD models usually
achieve good performance by learning co-salient object rep-
resentations jointly. More specifically, Zhang et al. [92]
introduces a domain adaption model to transfer the prior
knowledge for CoSOD. Wei et al. [79] uses a group in-
put and output to discover the collaborative and interac-
tive relationships between group-wise and single-image fea-
ture representations, in a collaborative learning framework.
Along another line, the MVSRCC [87] model employed
typical features, such as SIFT, LBP and color histograms,
as multi-view features. In addition, several other meth-
ods [31,32,35,70,74,80,99] are based on the more powerful
CNN models (e.g., ResNet [28], Res2Net [26], GoogLeNet
[72], VGGNet [68]), achieving SOTA performances. These
deep models generally achieved better performance through
either weakly-supervised (e.g., CODW [94], SP-MIL [96],
GONet [33], FASS [105]) or fully supervised learning (e.g.,
DIM [92], GD [79], DML [53]). A summary of the tradi-
tional and deep learning based models is listed in Tab. 2.
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Figure 3: Statistics of the proposed CoSOD3k dataset. (a) Taxonomic structure of our dataset. (b) Distribution of the instance sizes. (c)
Word clouds of the CoSOD3k dataset. (d) Image number of 49 animal categories. Best viewed on screen and zoomed-in for details.

3. Proposed CoSOD3k Dataset.
3.1. Image Collection

We build a high-quality dataset, CoSOD3k, images of
which are collected from the large-scale object recognition
dataset ILSVRC [66]. There are several benefits of using
ILSVRC to generate our dataset. ILSVRC is gathered from
Flickr using scene-level queries and thus it includes vari-
ous object categories, diverse realistic-scenes, and differ-
ent object appearances, and covers a large span of the ma-
jor challenges in CoSOD, which provides us a solid basis
for building a representative benchmark dataset for CoSOD.
More importantly, the accompanying axis-aligned bounding
boxes for each target object category allows us to identify
unambiguous instance-level annotations.

3.2. Data Annotation
Similar to [21, 63], the data annotation is performed in a

hierarchical (coarse to fine) manner (see Fig. 2).
Category Labeling. We establish a hierarchical (three-
level) taxonomic system for the CoSOD3k dataset. 160
common categories are selected to generate sub-classes
(e.g., Ant, Fig, Violin, Train, etc.), which are consistent
with the original categories in ILSVRC. Then, an upper-
level class (middle-level) is assigned for each sub-classes.
Finally, we integrate the upper-level class into 13 super-
classes. The taxonomic structure of our CoSOD3k is given
in Fig. 3 (a).
Bounding Box Labeling. The second level ananotation
is bounding box, which is widely used in object detec-
tion and localization. Although the ILSVRC dataset pro-

vides bounding box annotations, the labeled objects are
not necessarily salient. Following many famous SOD
datasets [1, 2, 12, 39, 47, 48, 58, 62, 75, 83, 85], we ask three
viewers to re-draw the bounding boxes around the object(s)
in each image that dominate their attention. Then, we merge
the bounding boxes labeled by three viewers and let two ad-
ditional senior researchers in the CoSOD field double-check
the annotations. After that, as done in [40], we discard the
images that contain more than six objects, as well as those
containing only background. Finally, we collect 3,316 im-
ages within 160 categories.
Object-/Instance-level Annotation. The high-quality
pixel-level masks are necessary for Co-SOD dataset. We
hire twenty professional annotators and train them with 100
image examples. They are then instructed to annotate the
images with object- and instance-level labels according to
the previous bounding boxes. The average annotation time
per image is about 8 and 15 minutes for object-level and
instance-level labeling, respectively. Moreover, we also
have three volunteers to cross-check the whole process by
more than three-fold, to ensure high-quality annotation. In
this way, we obtain an accurate and challenging dataset with
totally 3,316 object-level, and 4,915 instance-level salient
object annotations. Note that our final bounding box la-
bels are refined further based on the pixel-level annotation
to tighten the target.

3.3. Dataset Features and Statistics
To provide deeper insights into our CoSOD3k, we

present its several important characteristics in below.



Metric PCSD CODR ESMG CBCS IPCS SACS UMLF CSHS HCNco DIM EGNet CPD CSMG
[10] [88] [54] [24] [51] [8] [27] [59] [60] [92]‡ [104]‡ [82]‡ [99]‡

Sα ↑ .401 .656 .664 .685 .747 .775 .810 .810 .838 .729 .842 .879 .902
Fβ ↑ .378 .652 .651 .800 .786 .837 .870 .856 .867 .867 .835 .880 .925
Eξ ↑ .598 .762 .767 .856 .848 .887 .898 .899 .896 .905 .887 .917 .952
M ↓ .242 .226 .198 .152 .168 .169 .163 .148 .073 .256 .076 .054 .067

Table 3: Benchmarking results of 13 CoSOD approaches on the Image Pair [51] dataset. For simplify, we use ↑ and ↓ denote larger and
smaller is better, respectively. Top three performances are highlighted in red, green and blue.

Goldfish

Zebra BicycleAirplane

Bird

CoSOD3k

Bus

Figure 4: Visualization of overlap masks for mixture-specific cat-
egory and overall category masks of CoSOD3k.

Mixture-specific Category Masks. Fig. 4 shows the av-
erage ground truth masks for single category and the over-
all category. It can be observed that some categories with
unique shapes (e.g., airplane, zebra, and bicycle) could
present the shape-bias maps, while the categories with non-
rigid or convex shapes (e.g., goldfish, bird, and bus) may
have no clear shape-bias. The overall category mask (the
left of Fig. 4) tends to appear a center-bias map without
shape bias, which fits the role of salient object. As is well-
known, humans are usually inclined to pay more attention
to the center of a scene when taking a photo. Thus, it is easy
for a SOD model to achieve a high score when employing a
Gaussian function in its algorithm. Due to the limitation of
space, we present all 160 mixture-specific category masks
on the supplementary materials.
Sufficient Object Diversity. As shown in Tab. 6 (2nd row)
and Fig. 3 (c), our CoSOD3k covers a large set of super-
classes including Vegetables, Food, Fruit, Tool, Necessary,
Traffic, Cosmetic, Ball, Instrument, Kitchenware, Animal
(Fig. 3 d), and Others, enabling a comprehensive under-
standing of real-world scenes.
Size of Instances. The instance size is defined as the ra-
tio of foreground instance pixels to the total image pixels.
Tab. 4 summarizes the instance sizes in our CoSOD3k. The
distributions (Fig. 3 b) of instance sizes are 0.02%∼86.5%
(avg.: 13.8%), yielding a broad range.
Number of Instances. Being able to parse object into in-
stance is critical for humans to understand, categorize, and
interact with the world. To enable learning methods to gain
instance-level understanding, annotations with instance la-
bels are in high demand. With this in mind, in contrast to ex-
isting CoSOD datasets, our CoSOD3k contains the multiple
instance scene with instance-level annotation. As reported
in Tab. 4, the number of instances (1, 2, ≥3) is subject to a
ratio of 7:2:1.

Instance Size. # InstancesCoSOD3k large (>30%) middle small (<5%) 1 2 ≥ 3
# Images 439 3173 1303 2371 644 334

Table 4: Statistics of the instance sizes and numbers in the pro-
posed CoSOD3k dataset.

4. Benchmark Experiments

4.1. Experimental Settings

Evaluation Metrics. To provide a comprehensive eval-
uation, two widely-used metrics: maximum F-measure
(Fβ) [1], MAE (M ) [13], and two recently proposed met-
rics: S-measure (Sα) [19], maximum E-measure (Eξ) [20]
are adapted to evaluating CoSOD performance in multi-
ple images. Let D = {G1, . . . , Gi, . . . , Gq} denote the
whole dataset with q image groups, and Iik is the kth im-
age in image group Gi = {Ii1, . . . , Iik, . . . , IiNi

}. Ni is
the number of images in the Gi. ND is the total num-
ber of images in the whole dataset D. For each metric
ϑ ∈ {Sα, Eξ, Fβ ,M}, we calculate its mean score (Tab. 5
& Tab. 3) on the whole dataset. The mean metric on dataset
D is defined as Qϑ(D) = 1

ND

∑q
i=1

∑Ni

k=1 ϑ(I
i
k). To

provide deep insight into the performance of algorithms
on group level, we also provide the group mean score, as
Tϑ(Gi) =

1
Ni

∑Ni

k=1 ϑ(I
i
k).

Competitors. In this study, we evaluate/compare 19 SOTA
CoSOD models, including 10 traditional methods [8,10,24,
27,51,52,54,59,60,88] and 9 deep learning models [33,65,
82, 92, 94, 96, 97, 99, 104]. The methods were chosen based
on two criteria: (1) representative, and (2) release code.

Benchmark Protocols. We evaluate on four existing
CoSOD datasets, i.e., Image Pair [51], MSRC [81],
iCoSeg [4], CoSal2015 [93], and our CoSOD3k. There are
363 groups in total with about 61K images, making this the
largest and most comprehensive benchmark. For a fair com-
parison, we run the available code directly with default set-
tings (e.g., PCSD [10], IPCS [51], CSHS [59], CBCS [24],
RFPR [52], ESMG [54], SACS [8], CODR [88], HC-
Nco [60], UMLF [27], CPD [82], EGNet [104]) or using
the CoSOD maps provided by the authors (e.g., IML [65],
CODW [94], GONet [33], SP-MIL [96], CSMG [99]).



Metric CBCS ESMG RFPR CSHS SACS CODR UMLF DIM CODW MIL IML GONet SP-MIL CSMG CPD EGNet
[24] [54] [52] [59] [8] [88] [27] [92]‡ [94]‡ [97]‡ [65]‡ [33]‡ [96]‡ [99]‡ [82]‡ [104]‡

M
SR

C Sα ↑ .480 .532 .644 .666 .707 .754 .797 .657 .713 .720 .781 .795 .769 .722 .714 .702
Fβ ↑ .630 .606 .696 .727 .782 .776 .849 .705 .784 .768 .840 .846 .824 .847 .762 .752
Eξ ↑ .676 .675 .746 .784 .810 .822 .880 .725 .820 .800 .856 .863 .855 .859 .795 .794
M ↓ .314 .303 .302 .289 .224 .198 .184 .309 .264 .216 .174 .179 .218 .190 .173 .186

C
oS

al
20

15 Sα ↑ .544 .552 N/A .592 .694 .689 .662 .592 .648 .673 - .751 N/A .774 .814 .818
Fβ ↑ .532 .476 N/A .564 .650 .634 .690 .580 .667 .620 - .740 N/A .784 .782 .786
Eξ ↑ .656 .640 N/A .685 .749 .749 .769 .695 .752 .720 - .805 N/A .842 .841 .843
M ↓ .233 .247 N/A .313 .194 .204 .271 .312 .274 .210 - .160 N/A .130 .098 .099

iC
oS

eg

Sα ↑ .658 .728 .744 .750 .752 .815 .703 .758 .750 .727 .832 .820 .771 .821 .861 .875
Fβ ↑ .705 .685 .771 .765 .770 .823 .761 .797 .782 .741 .846 .832 .794 .850 .855 .875
Eξ ↑ .797 .784 .841 .841 .817 .889 .827 .864 .832 .799 .895 .864 .843 .889 .900 .911
M ↓ .172 .157 .170 .179 .154 .114 .226 .179 .184 .186 .104 .122 .174 .106 .057 .060

Table 5: Benchmarking results of 16 leading CoSOD approaches on existing three classical [4,81,93] datasets. “N/A” means that the code
or results are not available. “–” denotes the whole images of the dataset has been used as training set. Note that the UMLF method adopts
half of the images from both MSRC and CoSal2015 to train their model. The “score” indicates the score generated by specific models (e.g.,
SP-MIL, UMLF) that has been trained on this dataset. Refer to Tab. 2 for more training details (Some methods trained with more data).

4.2. Quantitative Comparisons

Performance on Image Pair. The first CoSOD dataset is
the Image Pair [51], as shown in Tab. 3. The Image Pair [51]
dataset only has a pair of images in each group, and most
co-salient objects have similar appearances. Thus it is rel-
atively easy compared to other co-salient object detection
datasets, and the top-1 model, i.e., CSMG [99], gains a high
performance (Sα >0.9).

Performance on MSRC. MSRC dataset [81] has more im-
ages in each group. From the Tab. 5, it can be observed
that UMLF [27], GONet [33], IML [65], and SP-MIL [96]
are the top-4 models on this dataset. Interestingly, we
find that all these models employ the superpixel method to
deduce the co-occurrence regions across multiple images.
These works obtain good performances on MSRC dataset,
which contains a large number of salient objects with sim-
ilar appearances. However, their performances drop dra-
matically on iCoSeg (e.g., GONet: No. 2 → No. 5) and
our CoSOD3k as a consequence of the superpixel technique
focusing on color similarity and therefore not being robust
enough to semantic-aware datasets.

Performance on iCoSeg. The iCoSeg dataset [4] was orig-
inally designed for image co-segmentation but is widely
used for the CoSOD task. As can be seen in Tab. 5, the
two SOD models (EGNet [104] and CPD [82]) achieve the
state-of-the-art performances. One possible reason is that
the iCoSeg dataset contains a lot of image with single ob-
ject, which could be detected easily by SOD model. This
partially suggests that iCoSeg dataset may not suit for eval-
uating co-salient object detection methods.

Performance on CoSal2015. Tab. 5 shows the evaluation
results on on the CoSal2015 dataset [93]. One interesting
observation is that the top-2 models are still EGNet [104]

and CPD [82], which are consistent with the model rank-
ing on the iCoSeg dataset. This implies that some top-
performing salient object detection framework may be bet-
ter suited for extension to CoSOD tasks.

Performance on CoSOD3k. The results on our
CoSOD3k are presented in Tab. 6. To provide deeper insight
into the each group, we report the performances of models
on 13 super-classes. We could observe that lower average
scores are achieved on classes such as Other (e.g., baby bed,
pencil box), Instrument (e.g., piano, guitar, cello, etc), Nec-
essary (e.g., pitcher), Tool (e.g., axe, nail, chain saw), and
Ball (e.g., soccer, tennis), which contain complex structures
in these real scenes. The top-1 performance (Sα =0.76) of
each row clearly shows that the proposed CoSOD3k dataset
is challenging and leaves abundant room for further re-
search. Note that almost all of the deep-based models (e.g.,
EGNet [104], CPD [82], IML [65], CSMG [99], etc) per-
form better than the traditional approaches (CODR [88],
CSHS [59], CBCS [24], and ESMG [54]), demonstrating
the potential advantages in utilizing deep learning tech-
niques to address the CoSOD problem. Another interesting
finding is that edge features can help with providing good
boundaries for the results. For instance, the best methods
from both traditional (CSHS [59]) and deep learning mod-
els (e.g., EGNet [104]) introduce edge information to aid
detection.

4.3. Qualitative Comparisons
Two visual results of 10 state-of-the-art algorithms on

CoSOD3k are shown in Fig. 5. It can be seen that the SOD
models, e.g., EGNet [104] and CPD [82], detect all salient
objects, but ignore the corresponding information. For ex-
ample, its results of banana contain several other irrelevant
objects, e.g., orange, pineapple, and apple. A similar situ-
ation also occurs in the images in the horse group, where



Vege. Food Fruit Tool Nece. Traf. Cosm. Ball Inst. Kitch. Elec. Anim. Oth. All
#Sub-class 4 5 9 11 12 10 4 7 14 9 9 49 17 160

CBCS(TIP’13) [24] .512 .496 .602 .523 .506 .512 .505 .554 .516 .505 .511 .547 .498 .528
CSHS(SPL’13) [59] .521 .549 .635 .556 .530 .574 .569 .525 .535 .554 .573 .592 .516 .563

ESMG(SPL’14) [54] .488 .553 .649 .517 .458 .527 .484 .478 .545 .492 .516 .568 .486 .532
CODR(SPL’15) [88] .632 .646 .696 .595 .586 .649 .602 .574 .576 .612 .616 .682 .573 .630

DIM‡(TNNLS’15) [92] .593 .626 .663 .538 .534 .569 .530 .515 .540 .528 .545 .577 .517 .559
UMLF(TCSVT’17) [27] .711 .689 .697 .534 .648 .669 .615 .567 .559 .671 .634 .667 .559 .632

IML‡(NC’19) [65] .767 .693 .763 .671 .680 .762 .691 .664 .655 .727 .688 .791 .623 .720
CSMG‡(CVPR’19) [99] .645 .774 .756 .612 .666 .770 .632 .714 .612 .751 .725 .780 .617 .711

CPD‡(CVPR’19) [82] .769 .732 .788 .705 .733 .824 .719 .676 .611 .796 .745 .846 .649 .757
EGNet‡(ICCV’19) [104] .795 .746 .792 .712 .740 .809 .728 .683 .621 .800 .742 .850 .659 .762

Average .643 .650 .704 .596 .608 .667 .608 .595 .577 .644 .630 .690 .570 .639

Table 6: Per super-class average performance (Sα) on our CoSOD3k. Vege. = Vegetables, Nece. = Necessary, Traf. = Traffic, Cosm.=
Cosmetic, Inst. = Instrument, Kitch. = Kitchenware, Elec. = Electronic, Anim. = Animal, Oth. = Others. “All” means the score on
the whole dataset. We only evaluate the 10 state-of-the-art models, which release their codes. Note that CPD and EGNet are top-2 SOD
models in the socbenchmark (http://dpfan.net/socbenchmark).

the fence (the second image) and the riders (the first and
fourth images) are detected together with the horse. On the
other hand, the CoSOD methods, e.g., CSMG [99], could
identify the common salient objects, but could not produce
the accurate predicted map, especially in the object bound-
aries. Based on the above observations, we conclude that
the CoSOD remains far from being solved and there are still
large room for the subsequent models.

5. Discussion
From the evaluation, it observes that in most cases, the

current SOD methods (e.g., EGNet [104] and CPD [82]) can
obtain very competitive or even better performances than
the CoSOD methods (e.g., CSMG [99] and SP-MIL [96]).
However, this does not mean that the current datasets are
not complex enough that directly using the SOD method
to obtain good performance—the performances of the SOD
methods on the CoSOD datasets are actually lower than
those on the SOD datasets, such as HKU-IS [48] (Fβ =
0.937 for EGNet) and ECSSD [85] (Fβ = 0.943 for EG-
Net [104]). Instead, this is because many problems in
CoSOD are still under-studied, which make the existing
CoSOD models less effective. In this section, we discuss
four important issues, that have not been fully addressed by
the existing co-salient object detection methods and should
be studied in the future.

Scalability. The scalability issue is one of the most im-
portant issues that need to be considered for designing the
CoSOD algorithm. Specifically, it indicates the capability
of the CoSOD model for handling large-scale image scenes.
As we know, one key property of CoSOD is that the model
needs to consider multiple images from each group. How-
ever, in reality, an image group may contain numerous re-
lated images. Under this circumstance, methods without
considering the scalability issue would have huge computa-
tional costs and take very long time to run, which are un-
acceptable in practice. Thus, how to address the scalability
issue becomes a key problem in this field, especially when

applying CoSOD methods for real-world applications.

Stability. Another important issue is the stability issue.
When dealing with image groups containing multiple im-
ages, some existing methods (e.g., HCNco [60], PCSD [10],
IPCS [51]) divide the image group into image pairs or im-
age sub-groups (e.g., GD [79]). Another school of meth-
ods adopt the RNN-based model (e.g.,GWD [43]), which
need to assign order of the input images. All such strategies
would make the whole process unstable as there is no prin-
ciple ways to divide the image group or assign input order
of the related images. This would also influence the appli-
cation of the CoSOD methods.

Compatibility. Introducing the SOD into the CoSOD is a
direct yet effective strategy for building the CoSOD frame-
work. However, the most existing works only introduce
the results or features of the SOD model as the useful in-
formation cues. One further step for leveraging the SOD
technique is to combine the CNN-based SOD network with
the CoSOD model to build a unified, end-to-end trainable
framework for CoSOD. To achieve this goal, one needs to
consider the compatibility of the CoSOD framework, mak-
ing it convenient to integrate the existing SOD techniques.

Metrics. Current evaluation metrics of CoSOD are de-
signed according to the SOD, i.e., calculating the mean
of the SOD scores on each group directly. In contrast to
SOD, the CoSOD involves relationship information of co-
salient objects among different images, which is more im-
portant for CoSOD evaluating and brings more challenges.
For example, current CoSOD metrics assume the target ob-
jects have the similar sizes in all images. As the objects
with different sizes in different images, the CoSOD metric
(Sα, Eξ, Fβ ,M in Sec. 4) would like to be inclined to large
objects. Moreover, the current CoSOD metrics are bias to
the object detection performance in single image, rather
than the identifying of corresponding objects in multiple
images. Thus, how to design suitable metrics for CoSOD
is an open issue.

http://dpfan.net/socbenchmark
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Figure 5: Qualitative examples of existing top-10 models on CoSOD3k. More examples are shown in the supplementary materials.

6. Conclusion

In this paper, we have presented a complete investigation
on the co-salient object detection (CoSOD). By identifying
the serious data bias, i.e., assuming that each group of im-
ages contain salient object(s) of similar visual appearance,
in current CoSOD datasets, we build a new high-quality
dataset, named CoSOD3k, containing co-salient object(s)
that have similarity in semantic or conceptual level. No-
tably, CoSOD3k is the most challenge CoSOD dataset so
far, which contains 160 groups and totally 3,316 images an-
notated with categories, bounding boxes, object-level, and
instance-level annotations. It makes a significant leap in
terms of diversity, difficulty and scalability, benefiting re-
lated vision tasks, e.g., co-segmentation, weakly supervised

localization, and instance-level detection, and would benefit
a lot for the future development in these research fields.

Besides, this paper has also provided a comprehensive
study by summarizing 34 cutting-edge algorithms, bench-
marking 19 of them over four existing datasets as well as
the proposed CoSOD3k dataset. Based on the evaluation
results, we provide insightful discussions on the core issues
in the research field of CoSOD. We hope the studies pre-
sented in this work would give a strong boost to growth in
the CoSOD community. In the future, we plan to increase
the dataset scale to spark novel ideas.
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