Yun Liu 刘云
I am a PhD student at CCCE&CS, Nankai University (Tianjin, China). My advisor is Professor Ming-Ming Cheng. I received my bachelor degree from Nankai University in 2016. My research interest includes computer vision and machine learning (especially deep learning).
I have graduated, so this page has stopped updating. Please refer to https://yun-liu.github.io/ for updated information.
Selected Publications
- Richer Convolutional Features for Edge Detection, Yun Liu, Ming-Ming Cheng, Xiaowei Hu, Jia-Wang Bian, Le Zhang, Xiang Bai, and Jinhui Tang, IEEE TPAMI (CVPR’17), 2019. [Project page] [pdf] [bib] [Source code]
- Sequential Optimization for Efficient High-Quality Object Proposal Generation, Ziming Zhang, Yun Liu, Xi Chen, Yanjun Zhu, Ming-Ming Cheng, Venkatesh Saligrama, and Philip H.S. Torr, IEEE TPAMI, 2018. [pdf] [Source code]
- Nonlinear Regression via Deep Negative Correlation Learning, Le Zhang, Zenglin Shi, Ming-Ming Cheng, Yun Liu, Jia-Wang Bian, Joey Tianyi Zhou, Guoyan Zheng, and Zeng Zeng, IEEE TPAMI, 2020. [pdf] [Source code]
- Ordered or Orderless: A Revisit for Video based Person Re-Identification, Le Zhang, Zenglin Shi, Joey Tianyi Zhou, Ming-Ming Cheng, Yun Liu, Jia-Wang Bian, Zeng Zeng, and Chunhua Shen, IEEE TPAMI, 2020. [pdf|code|bib]
- GMS: Grid-based Motion Statistics for Fast, Ultra-robust Feature Correspondence, Jia-Wang Bian, Wen-Yan Lin, Yun Liu, Le Zhang, Sai-Kit Yeung, Ming-Ming Cheng, and Ian Reid, IJCV, 2020. [pdf|bib|project|code]
- HFS: Hierarchical Feature Selection for Efficient Image Segmentation, Ming-Ming Cheng*, Yun Liu*, Qibin Hou, Jiawang Bian, Philip Torr, Shi-Min Hu, and Zhuowen Tu (* indicates joint first authors), ECCV, 2016. [project|pdf|bib|code]
- DEL: Deep Embedding Learning for Efficient Image Segmentation, Yun Liu, Peng-Tao Jiang, Vahan Petrosyan, Shi-Jie Li, Jiawang Bian, Le Zhang, Ming-Ming Cheng, IJCAI, 2018. [pdf|bib|project|code]
- Rethinking Computer-aided Tuberculosis Diagnosis, Yun Liu, Yu-Huan Wu, Yunfeng Ban, Huifang Wang, Ming-Ming Cheng, IEEE CVPR (Oral), 2020. [pdf|project|bib|Dataset on Google Drive|Dataset on Baidu Yunpan|Online Challenge|Video|PPT]
(Visited 12,284 times, 1 visits today)
你好,想问下《Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation》这篇文章的代码开源么?
已经开源了
你好 想问一下你Semantic Edge Detection with Diverse Deep Supervision这篇文章能开源代码吗?
您好,因为这篇论文仍然在审稿状态(两年了),所以现阶段不方便共享代码。一旦论文被接收,我们一定第一时间开源代码。
您好。请问Multicue dataset training 和test的split怎么划分啊?可以分享吗?谢谢
您好,training和test没有固定的划分,我们follow HED的做法,随机将100张数据分为80张训练和20张测试,这么做三次,然后取平均值。可以在论文里找到具体的描述。
您好,请问您能提供Multicue数据集在edge detection任务中的groundtruth文件么?谢谢您了!
您好,请问Multicue的dataset training 和test set的split在哪里下载啊。
您好,请问为什么邮箱格式有错误,就您发的rcf这篇论文有点问题想向您请教。
这个问题太笼统,不知道如何回答。建议有问题在项目页面留言,别人有类似问题的也可以参考。