Research

Salient Object Detection: A Benchmark

[:en]

Ali Borji, Ming-Ming Cheng, Huaizu Jiang, Jia Li

Notice: Welcome to contact Ming-Ming Cheng for adding new comparisons. Adding new results should supply either source code or executable.

Abstract

We extensively compare, qualitatively and quan- titatively, 42 state-of-the-art models (30 salient object detection, 10 fixation prediction, 1 objectness, and 1 baseline) over 6 challenging datasets for the purpose of benchmarking salient object detection and segmentation methods. From the results obtained so far, our evaluation shows a consistent rapid progress over the last few years in terms of both accuracy and running time. The top contenders in this benchmark significantly outperform the models identified as the best in the previous benchmark conducted just two years ago. We find that the models designed specifically for salient object detection generally work better than models in closely related areas, which in turn provides a precise definition and suggests an appropriate treatment of this problem that distinguishes it from other problems. In particular, we analyze the influences of center bias and scene complexity in model performance, which, along with the hard cases for state-of-the-art models, provide useful hints towards constructing more challenging large scale datasets and better saliency models. Finally, we propose probable solutions for tackling several open problems such as evaluation scores and dataset bias, which also suggest future research directions in the rapidly-growing field of salient object detection.

Papers

  • Salient Object Detection: A Benchmark, Ali Borji, Ming-Ming Cheng, Huaizu Jiang, Jia Li, IEEE TIP, 2015.  [pdf] [Project page] [Bib]
  • Salient Object Detection: A Survey, Ali Borji, Ming-Ming Cheng, Huaizu Jiang, Jia Li, arXiv eprint, 2014.  [pdf] [Project page] [Bib]

Code

Downloads

We provide the evaluation data (images, ground truth, saliency maps, etc.) downloads here to facilitate future research. We suggest to use BT software to download these zip files using their url lists, which is available here. Evaluation resutls in form of matlab and csv file for plots and talbes could be downloaded here. If you use any parts of our results, please cite the corresponding paper above. 您也可以通过百度网盘下载。

Performance: FMeasure of saliency maps and salient object segmentations

ModelT-MT-AT-SJ-MJ-AJ-SD-MD-AD-SS-MS-AS-SM-MM-AM-SE-ME-AE-S
MBD.622.594.642.472.422.470.624.592.636.799.803.759.849.830.890.739.703.785
ST.631.580.648.455.394.459.631.577.635.818.805.768.868.825.896.752.690.777
QCUT.651.625.620.509.454.480.683.647.647.810.801.672.874.843.843.779.738.747
HDCT.602.571.636.412.378.422.609.572.643.822.802.758.837.807.877.705.669.74
RBD.596.566.618.457.403.461.63.58.647.837.825.75.856.821.884.718.68.757
GR.551.509.546.418.338.378.599.54.58.798.753.639.816.77.83.664.583.677
MNP.495.523.603.367.337.405.467.486.576.621.778.765.668.724.822.568.555.709
UFO.579.557.61.432.385.433.545.541.593.742.781.729.842.806.862.701.654.739
MC.61.603.6.46.42.434.627.603.615.779.803.63.847.824.855.742.704.745
DSR.611.604.597.454.421.41.626.614.593.794.821.632.835.824.833.737.717.703
CHM.612.591.643.417.368.424.604.586.637.75.75.658.825.804.857.722.684.735
GC.533.517.497.384.321.342.535.528.506.729.73.616.794.777.78.641.612.593
LBI.519.534.618.371.353.416.482.504.609.692.776.764.696.714.857.586.563.738
PCA.544.558.601.432.404.368.554.554.624.754.796.701.782.782.845.646.627.72
DRFI.67.607.674.475.419.447.665.605.669.831.839.702.881.838.905.787.733.801
GMR.597.594.579.454.409.432.61.591.591.773.789.643.847.825.839.74.712.736
HS.585.549.602.442.358.428.616.565.616.811.776.713.845.8.87.731.659.769
LMLC.54.519.588.375.302.397.521.493.551.653.712.674.801.772.86.659.6.735
SF.5.495.342.373.319.219.519.512.377.764.794.509.779.759.573.619.576.378
FES.547.575.426.424.411.333.52.555.38.617.785.174.717.753.534.645.655.467
CB.581.556.615.444.375.435.542.534.593.73.704.657.815.775.857.717.656.761
SVO.554.441.609.414.279.419.557.407.609.744.667.746.789.585.863.639.357.737
SWD.528.56.649.434.386.454.478.506.613.548.714.737.689.705.871.624.549.781
HC.386.401.436.286.257.28.382.38.435.736.759.646.677.663.74.46.441.499
RC.61.586.639.431.37.425.599.578.621.774.807.649.844.82.875.741.701.776
SEG.5.425.58.376.268.393.516.45.562.704.64.669.697.585.812.568.408.715
MSS.478.49.2.341.324.089.476.49.193.743.783.298.696.711.362.53.536.203
CA.458.494.557.353.33.394.435.458.532.591.737.565.621.679.748.515.494.625
FT.386.4.238.278.25.132.381.388.259.715.734.436.635.628.472.434.431.257
AC.41.431.068.227.199.049.354.383.04.684.729.14.52.566.014.411.41.038
LC.386.408.289.264.246.156.327.353.243.683.752.486.569.589.432.39.396.219
OBJ.498.482.593.368.282.413.481.445.578.685.723.731.718.681.84.574.456.698
BMS.568.578.594.434.404.416.573.576.58.713.76.627.805.798.822.683.659.69
COV.51.587.398.429.427.315.486.579.373.518.724.212.667.755.394.641.677.413
SS.415.482.523.344.321.397.396.443.502.533.696.641.572.642.675.467.441.574
SIM.372.429.568.295.292.384.358.402.539.498.685.725.498.585.794.433.391.672
SeR.374.419.536.316.285.388.385.411.532.521.714.702.542.607.755.419.391.596
SUN.387.432.486.303.291.285.321.36.445.504.661.613.505.596.67.388.376.478
SR.374.457.002.279.27.001.298.3630.504.7.002.473.569.001.381.385.001
GB.526.571.65.419.396.455.507.548.638.571.746.695.688.737.837.624.613.765
AIM.427.461.559.317.26.36.361.377.495.541.718.693.555.575.75.449.357.571
IT.373.437.005.297.2830.378.449.005.579.697.008.471.586.158.407.414.003
AVG.458.569.62.392.367.411.406.514.534.388.524.64.58.692.779.597.627.756
Max FMeasure of average precision recall curve, average FMeasure for adaptive thresholding results, average FMeasure for SalCut. The subtitle of each column is in the [Dataset]-[Evaluation Metric] format, where [Dataset] is represented by the initial letter for the 6 benchmarks {THUR15K, JuddDB, DUT-OMRON, SED2, MSRA10K, ECSSD}. Click the title of the column to rerank the table according to that metric.

Performance: AUC & MAE

MethodT-AUCT-MAEJ-AUCJ-MAED-AUCD-MAES-AUCS-MAEM-AUCM-MAEE-AUCE-MAE
MBD0.9150.1620.8380.2250.9030.1680.9220.1370.9640.1070.9170.172
ST0.9110.1790.8060.2400.8950.1820.9220.1450.9610.1220.9140.193
QCUT0.9070.1280.8310.1780.8970.1190.8600.1480.9560.1180.9090.171
HDCT0.8780.1770.7710.2090.8690.1640.8980.1620.9410.1430.8660.199
RBD0.8870.150.8260.2120.8940.1440.8990.130.9550.1080.8940.173
GR0.8290.2560.7470.3110.8460.2590.8540.1890.9250.1980.8310.285
MNP0.8540.2550.7680.2860.8350.2720.8880.2150.8950.2290.820.307
UFO0.8530.1650.7750.2160.8390.1730.8450.180.9380.150.8750.207
MC0.8950.1840.8230.2310.8870.1860.8770.1820.9510.1450.910.204
DSR0.9020.1420.8260.1960.8990.1390.9150.140.9590.1210.9140.173
CHM0.910.1530.7970.2260.890.1520.8310.1680.9520.1420.9030.195
GC0.8030.1920.7020.2580.7960.1970.8460.1850.9120.1390.8050.214
LBI0.8760.2390.7920.2730.8540.2490.8960.2070.910.2240.8420.28
PCA0.8850.1980.8040.1810.8870.2060.9110.20.9410.1850.8760.248
DRFI0.9380.150.8510.2130.9330.1550.9440.130.9780.1180.9440.166
GMR0.8560.1810.7810.2430.8530.1890.8620.1630.9440.1260.8890.189
HS0.8530.2180.7750.2820.860.2270.8580.1570.9330.1490.8830.228
LMLC0.8530.2460.7240.3030.8170.2770.8260.2690.9360.1630.8490.26
SF0.7990.1840.7110.2180.8030.1830.8710.180.9050.1750.8170.23
FES0.8670.1550.8050.1840.8480.1560.8380.1960.8980.1850.860.215
CB0.870.2270.760.2870.8310.2570.8390.1950.9270.1780.8750.241
SVO0.8650.3820.7840.4220.8660.4090.8750.3480.930.3310.8570.404
SWD0.8730.2880.8120.2920.8430.310.8450.2960.9010.2670.8570.318
HC0.7350.2910.6260.3480.7330.310.880.1930.8670.2150.7040.331
RC0.8960.1680.7750.270.8590.1890.8520.1480.9360.1370.8920.187
SEG0.8180.3360.7470.3540.8250.3370.7960.3120.8820.2980.8080.342
MSS0.8130.1780.7260.2040.8170.1770.8710.1920.8750.2030.7790.245
CA0.830.2480.7740.2820.8150.2540.8530.2290.8720.2370.7840.31
FT0.6840.2410.5930.2670.6820.250.820.2060.790.2350.6610.291
AC0.740.1860.5480.2390.7210.190.8310.2060.7560.2270.6680.265
LC0.6960.2290.5860.2770.6540.2460.8270.2040.7710.2330.6270.296
OBJ0.8390.3060.750.3590.8220.3230.870.2690.9070.2620.8180.337
BMS0.8790.1810.7880.2330.8560.1750.8520.1840.9290.1510.8650.216
COV0.8830.1550.8260.1820.8640.1560.8330.210.9040.1970.8790.217
SS0.7920.2670.7540.3010.7840.2770.8260.2660.8230.2660.7250.344
SIM0.7970.4140.7270.4120.7830.4290.8330.3840.8080.3880.7340.433
SeR0.7780.3450.7460.3790.7860.3520.8350.290.8130.310.6950.404
SUN0.7460.310.6740.3190.7080.3490.7890.3070.7780.3060.6230.396
SR0.7410.1750.6760.20.6880.1810.7690.220.7360.2320.6330.266
GB0.8820.2290.8150.2610.8570.240.8390.2420.9020.2220.8650.263
AIM0.8140.2980.7190.3310.7680.3220.8460.2620.8330.2860.730.339
IT0.6230.1990.5860.20.6360.1980.6820.2450.640.2130.5770.273
AVG0.8490.2480.7970.3430.8140.2880.7360.4050.8570.260.8630.276
Comparison of AUC scores (larger better) and MAE scores (smaller better). Similar to the table above, the subtitle of each column is in the [Dataset]-[Evaluation Metric] format, where [Dataset] is represented by the initial letter for the 6 benchmarks {THUR15K, JuddDB, DUT-OMRON, SED2, MSRA10K, ECSSD}. Click the title of the column to rerank the table according to that metric.

Salient object detection datasets

Abbr.ImagesReferences
MSRA10K10000Learning to Detect A Salient Object , IEEE CVPR 2007, Liu et al. Frequency-tuned Salient Region Detection, IEEE CVPR 2009, Achanta et al. Global Contrast based Salient Region Detection, IEEE TPAMI 2015, Cheng et al.
ECSSD1000Hierarchical Saliency Detection, IEEE CVPR 2013, Yan et al.
THUR15K15000SalientShape: Group Saliency in Image Collections, The Visual Computer 2013, Cheng et al.
JuddDB900What is a salient object? A dataset and a baseline model for salient object detection, arXiv, ePrints
DUTOMRON5000Saliency Detection Via Graph-Based Manifold Ranking, IEEE CVPR 2013, Yang et al.
SED 2100Image segmentation by probabilistic
bottom-up aggregation and cue integration
, IEEE CVPR 2007, Alpert et al

Information about different methods

Abbr.DateRun time (s)CodeBooktitlePaper title
MB+2015CIEEE ICCVMinimum Barrier Salient Object Detection at 80 FPS
ST2014MIEEE TIPSaliency Tree: A Novel Saliency Detection Framework
QCUT2014M+CICPRAutomatic Object Segmentation by Quantum Cuts
HDCT20144.12MIEEE CVPRSalient Region Detection via High-dimensional Color Transform
RBD20140.269MIEEE CVPR Saliency Optimization from Robust Background Detection
GR20131.35M+CSig. Proc. Lett.Graph-Regularized Saliency Detection With Convex-Hull-Based Center Prior
MNP201321.0M+CThe Vis. Comp.Saliency for Image Manipulation
UFO201320.3M+CIEEE ICCVSalient Region Detection by UFO: Uniqueness, Focusness and Objectness
MC20130.195M+CIEEE ICCVSaliency Detection via Absorbing Markov Chain
DSR201310.2M+CIEEE ICCVSaliency Detection via Dense and Sparse Reconstruction
CHM201315.4M+CIEEE ICCVContextual Hypergraph Modeling for Salient Object Detection
GC20130.037CIEEE ICCVEfficient Salient Region Detection with Soft Image Abstraction
LBI2013251M+CIEEE CVPR Looking Beyond the Image: Unsupervised Learning for Object Saliency and Detection
PCA20134.34M+CIEEE CVPRWhat Makes a Patch Distinct?
DRFI20130.697M+CIEEE CVPRSalient Object Detection: A Discriminative Regional Feature Integration Approach
GMR20130.149CIEEE CVPRSaliency Detection via Graph-based Manifold Ranking
HS20130.528CIEEE CVPRHierarchical Saliency Detection
LMLC2013140M+CIEEE TIPBayesian Saliency via Low and Mid Level Cues
SF20120.202CIEEE CVPRSaliency Filters: Contrast Based Filtering for Salient Region Detection
FES20110.096M+CImage Ana.Fast and Efficient Saliency Detection Using Sparse Sampling and Kernel Density Estimation
CB20112.24M+CBMVCAutomatic salient object segmentation based on context and shape prior
SVO201156.5M+CIEEE ICCVFusing Generic Objectness and Visual Saliency for Salient Object Detection
SWD20110.190M+CIEEE CVPRVisual saliency detection by spatially weighted dissimilarity
HC20110.017CIEEE CVPRGlobal Contrast based Salient Region Detection
RC20150.136CIEEE TPAMIGlobal Contrast based Salient Region Detection
SEG201010.9MECCVSegmenting salient objects from images and videos
MSS20100.076CIEEE ICIPSaliency detection using maximum symmetric surround
CA201049.0M+CIEEE CVPRContext-aware saliency detection
FT20090.072CIEEE CVPRFrequency-tuned salient region detection
AC20080.129MICVSSalient region detection and segmentation
LC20060.009CACM Multi.Visual attention detection in video sequences using spatiotemporal cues
OBJ20103.01M+CIEEE CVPRWhat is an object?
BMS20130.575M+CIEEE ICCVSaliency Detection: A Boolean Map Approach
COV201325.4MJ. of Vis.Visual saliency estimation by nonlinearly integrating features using region covariances
SS20120.053MIEEE PAMIImage Signature: Highlighting sparse salient regions
SIM20111.11MIEEE CVPRSaliency estimation using a non-parametric low-level vision model
SeR20091.31MJ. of Vis.Static and space-time visual saliency detection by self-resemblance
SUN20083.56MJ. of Vis.SUN: A bayesian framework for saliency using natural statistics
SR20070.040MIEEE CVPRSaliency detection: A spectral residual approach
GB20060.735M+CNIPS Graph-based visual saliency
AIM20098.66MJ. of Vis.Saliency, attention, and visual search: An information theoretic approach
IT19980.302MIEEE PAMI A model of saliency-based visual attention for rapid scene analysis
Detailed information of each method. Regarding source code type: `C' means 'C/C++', 'M' means 'Matlab', 'M+C' means a mixture of Matlab and C/C++.

News

  1. 2015/4/24: evaluation results of QCUT has been added.
  2. 2015/10/24: evaluation results of MBD has been added.

[:zh]

Ali Borji, Ming-Ming Cheng, Huaizu Jiang, Jia Li

Notice: Welcome to contact Ming-Ming Cheng for adding new comparisons. Adding new results should supply either source code or executable.

Abstract

We extensively compare, qualitatively and quan- titatively, 42 state-of-the-art models (30 salient object detection, 10 fixation prediction, 1 objectness, and 1 baseline) over 6 challenging datasets for the purpose of benchmarking salient object detection and segmentation methods. From the results obtained so far, our evaluation shows a consistent rapid progress over the last few years in terms of both accuracy and running time. The top contenders in this benchmark significantly outperform the models identified as the best in the previous benchmark conducted just two years ago. We find that the models designed specifically for salient object detection generally work better than models in closely related areas, which in turn provides a precise definition and suggests an appropriate treatment of this problem that distinguishes it from other problems. In particular, we analyze the influences of center bias and scene complexity in model performance, which, along with the hard cases for state-of-the-art models, provide useful hints towards constructing more challenging large scale datasets and better saliency models. Finally, we propose probable solutions for tackling several open problems such as evaluation scores and dataset bias, which also suggest future research directions in the rapidly-growing field of salient object detection.

Papers

  • Salient Object Detection: A Benchmark, Ali Borji, Ming-Ming Cheng, Huaizu Jiang, Jia Li, IEEE TIP, 2015.  [pdf] [Project page] [Bib]
  • Salient Object Detection: A Survey, Ali Borji, Ming-Ming Cheng, Huaizu Jiang, Jia Li, arXiv eprint, 2014.  [pdf] [Project page] [Bib]

Code

Downloads

We provide the evaluation data (images, ground truth, saliency maps, etc.) to facilitate future research. Link: 百度网盘

Performance: FMeasure of saliency maps and salient object segmentations

ModelT-MT-AT-SJ-MJ-AJ-SD-MD-AD-SS-MS-AS-SM-MM-AM-SE-ME-AE-S
MBD.622.594.642.472.422.470.624.592.636.799.803.759.849.830.890.739.703.785
ST.631.580.648.455.394.459.631.577.635.818.805.768.868.825.896.752.690.777
QCUT.651.625.620.509.454.480.683.647.647.810.801.672.874.843.843.779.738.747
HDCT.602.571.636.412.378.422.609.572.643.822.802.758.837.807.877.705.669.74
RBD.596.566.618.457.403.461.63.58.647.837.825.75.856.821.884.718.68.757
GR.551.509.546.418.338.378.599.54.58.798.753.639.816.77.83.664.583.677
MNP.495.523.603.367.337.405.467.486.576.621.778.765.668.724.822.568.555.709
UFO.579.557.61.432.385.433.545.541.593.742.781.729.842.806.862.701.654.739
MC.61.603.6.46.42.434.627.603.615.779.803.63.847.824.855.742.704.745
DSR.611.604.597.454.421.41.626.614.593.794.821.632.835.824.833.737.717.703
CHM.612.591.643.417.368.424.604.586.637.75.75.658.825.804.857.722.684.735
GC.533.517.497.384.321.342.535.528.506.729.73.616.794.777.78.641.612.593
LBI.519.534.618.371.353.416.482.504.609.692.776.764.696.714.857.586.563.738
PCA.544.558.601.432.404.368.554.554.624.754.796.701.782.782.845.646.627.72
DRFI.67.607.674.475.419.447.665.605.669.831.839.702.881.838.905.787.733.801
GMR.597.594.579.454.409.432.61.591.591.773.789.643.847.825.839.74.712.736
HS.585.549.602.442.358.428.616.565.616.811.776.713.845.8.87.731.659.769
LMLC.54.519.588.375.302.397.521.493.551.653.712.674.801.772.86.659.6.735
SF.5.495.342.373.319.219.519.512.377.764.794.509.779.759.573.619.576.378
FES.547.575.426.424.411.333.52.555.38.617.785.174.717.753.534.645.655.467
CB.581.556.615.444.375.435.542.534.593.73.704.657.815.775.857.717.656.761
SVO.554.441.609.414.279.419.557.407.609.744.667.746.789.585.863.639.357.737
SWD.528.56.649.434.386.454.478.506.613.548.714.737.689.705.871.624.549.781
HC.386.401.436.286.257.28.382.38.435.736.759.646.677.663.74.46.441.499
RC.61.586.639.431.37.425.599.578.621.774.807.649.844.82.875.741.701.776
SEG.5.425.58.376.268.393.516.45.562.704.64.669.697.585.812.568.408.715
MSS.478.49.2.341.324.089.476.49.193.743.783.298.696.711.362.53.536.203
CA.458.494.557.353.33.394.435.458.532.591.737.565.621.679.748.515.494.625
FT.386.4.238.278.25.132.381.388.259.715.734.436.635.628.472.434.431.257
AC.41.431.068.227.199.049.354.383.04.684.729.14.52.566.014.411.41.038
LC.386.408.289.264.246.156.327.353.243.683.752.486.569.589.432.39.396.219
OBJ.498.482.593.368.282.413.481.445.578.685.723.731.718.681.84.574.456.698
BMS.568.578.594.434.404.416.573.576.58.713.76.627.805.798.822.683.659.69
COV.51.587.398.429.427.315.486.579.373.518.724.212.667.755.394.641.677.413
SS.415.482.523.344.321.397.396.443.502.533.696.641.572.642.675.467.441.574
SIM.372.429.568.295.292.384.358.402.539.498.685.725.498.585.794.433.391.672
SeR.374.419.536.316.285.388.385.411.532.521.714.702.542.607.755.419.391.596
SUN.387.432.486.303.291.285.321.36.445.504.661.613.505.596.67.388.376.478
SR.374.457.002.279.27.001.298.3630.504.7.002.473.569.001.381.385.001
GB.526.571.65.419.396.455.507.548.638.571.746.695.688.737.837.624.613.765
AIM.427.461.559.317.26.36.361.377.495.541.718.693.555.575.75.449.357.571
IT.373.437.005.297.2830.378.449.005.579.697.008.471.586.158.407.414.003
AVG.458.569.62.392.367.411.406.514.534.388.524.64.58.692.779.597.627.756
Max FMeasure of average precision recall curve, average FMeasure for adaptive thresholding results, average FMeasure for SalCut. The subtitle of each column is in the [Dataset]-[Evaluation Metric] format, where [Dataset] is represented by the initial letter for the 6 benchmarks {THUR15K, JuddDB, DUT-OMRON, SED2, MSRA10K, ECSSD}. Click the title of the column to rerank the table according to that metric.

Performance: AUC & MAE

MethodT-AUCT-MAEJ-AUCJ-MAED-AUCD-MAES-AUCS-MAEM-AUCM-MAEE-AUCE-MAE
MBD0.9150.1620.8380.2250.9030.1680.9220.1370.9640.1070.9170.172
ST0.9110.1790.8060.2400.8950.1820.9220.1450.9610.1220.9140.193
QCUT0.9070.1280.8310.1780.8970.1190.8600.1480.9560.1180.9090.171
HDCT0.8780.1770.7710.2090.8690.1640.8980.1620.9410.1430.8660.199
RBD0.8870.150.8260.2120.8940.1440.8990.130.9550.1080.8940.173
GR0.8290.2560.7470.3110.8460.2590.8540.1890.9250.1980.8310.285
MNP0.8540.2550.7680.2860.8350.2720.8880.2150.8950.2290.820.307
UFO0.8530.1650.7750.2160.8390.1730.8450.180.9380.150.8750.207
MC0.8950.1840.8230.2310.8870.1860.8770.1820.9510.1450.910.204
DSR0.9020.1420.8260.1960.8990.1390.9150.140.9590.1210.9140.173
CHM0.910.1530.7970.2260.890.1520.8310.1680.9520.1420.9030.195
GC0.8030.1920.7020.2580.7960.1970.8460.1850.9120.1390.8050.214
LBI0.8760.2390.7920.2730.8540.2490.8960.2070.910.2240.8420.28
PCA0.8850.1980.8040.1810.8870.2060.9110.20.9410.1850.8760.248
DRFI0.9380.150.8510.2130.9330.1550.9440.130.9780.1180.9440.166
GMR0.8560.1810.7810.2430.8530.1890.8620.1630.9440.1260.8890.189
HS0.8530.2180.7750.2820.860.2270.8580.1570.9330.1490.8830.228
LMLC0.8530.2460.7240.3030.8170.2770.8260.2690.9360.1630.8490.26
SF0.7990.1840.7110.2180.8030.1830.8710.180.9050.1750.8170.23
FES0.8670.1550.8050.1840.8480.1560.8380.1960.8980.1850.860.215
CB0.870.2270.760.2870.8310.2570.8390.1950.9270.1780.8750.241
SVO0.8650.3820.7840.4220.8660.4090.8750.3480.930.3310.8570.404
SWD0.8730.2880.8120.2920.8430.310.8450.2960.9010.2670.8570.318
HC0.7350.2910.6260.3480.7330.310.880.1930.8670.2150.7040.331
RC0.8960.1680.7750.270.8590.1890.8520.1480.9360.1370.8920.187
SEG0.8180.3360.7470.3540.8250.3370.7960.3120.8820.2980.8080.342
MSS0.8130.1780.7260.2040.8170.1770.8710.1920.8750.2030.7790.245
CA0.830.2480.7740.2820.8150.2540.8530.2290.8720.2370.7840.31
FT0.6840.2410.5930.2670.6820.250.820.2060.790.2350.6610.291
AC0.740.1860.5480.2390.7210.190.8310.2060.7560.2270.6680.265
LC0.6960.2290.5860.2770.6540.2460.8270.2040.7710.2330.6270.296
OBJ0.8390.3060.750.3590.8220.3230.870.2690.9070.2620.8180.337
BMS0.8790.1810.7880.2330.8560.1750.8520.1840.9290.1510.8650.216
COV0.8830.1550.8260.1820.8640.1560.8330.210.9040.1970.8790.217
SS0.7920.2670.7540.3010.7840.2770.8260.2660.8230.2660.7250.344
SIM0.7970.4140.7270.4120.7830.4290.8330.3840.8080.3880.7340.433
SeR0.7780.3450.7460.3790.7860.3520.8350.290.8130.310.6950.404
SUN0.7460.310.6740.3190.7080.3490.7890.3070.7780.3060.6230.396
SR0.7410.1750.6760.20.6880.1810.7690.220.7360.2320.6330.266
GB0.8820.2290.8150.2610.8570.240.8390.2420.9020.2220.8650.263
AIM0.8140.2980.7190.3310.7680.3220.8460.2620.8330.2860.730.339
IT0.6230.1990.5860.20.6360.1980.6820.2450.640.2130.5770.273
AVG0.8490.2480.7970.3430.8140.2880.7360.4050.8570.260.8630.276
Comparison of AUC scores (larger better) and MAE scores (smaller better). Similar to the table above, the subtitle of each column is in the [Dataset]-[Evaluation Metric] format, where [Dataset] is represented by the initial letter for the 6 benchmarks {THUR15K, JuddDB, DUT-OMRON, SED2, MSRA10K, ECSSD}. Click the title of the column to rerank the table according to that metric.

Salient object detection datasets

Abbr.ImagesReferences
MSRA10K10000Learning to Detect A Salient Object , IEEE CVPR 2007, Liu et al. Frequency-tuned Salient Region Detection, IEEE CVPR 2009, Achanta et al. Global Contrast based Salient Region Detection, IEEE TPAMI 2015, Cheng et al.
ECSSD1000Hierarchical Saliency Detection, IEEE CVPR 2013, Yan et al.
THUR15K15000SalientShape: Group Saliency in Image Collections, The Visual Computer 2013, Cheng et al.
JuddDB900What is a salient object? A dataset and a baseline model for salient object detection, arXiv, ePrints
DUTOMRON5000Saliency Detection Via Graph-Based Manifold Ranking, IEEE CVPR 2013, Yang et al.
SED 2100Image segmentation by probabilistic
bottom-up aggregation and cue integration
, IEEE CVPR 2007, Alpert et al

Information about different methods

Abbr.DateRun time (s)CodeBooktitlePaper title
MB+2015CIEEE ICCVMinimum Barrier Salient Object Detection at 80 FPS
ST2014MIEEE TIPSaliency Tree: A Novel Saliency Detection Framework
QCUT2014M+CICPRAutomatic Object Segmentation by Quantum Cuts
HDCT20144.12MIEEE CVPRSalient Region Detection via High-dimensional Color Transform
RBD20140.269MIEEE CVPR Saliency Optimization from Robust Background Detection
GR20131.35M+CSig. Proc. Lett.Graph-Regularized Saliency Detection With Convex-Hull-Based Center Prior
MNP201321.0M+CThe Vis. Comp.Saliency for Image Manipulation
UFO201320.3M+CIEEE ICCVSalient Region Detection by UFO: Uniqueness, Focusness and Objectness
MC20130.195M+CIEEE ICCVSaliency Detection via Absorbing Markov Chain
DSR201310.2M+CIEEE ICCVSaliency Detection via Dense and Sparse Reconstruction
CHM201315.4M+CIEEE ICCVContextual Hypergraph Modeling for Salient Object Detection
GC20130.037CIEEE ICCVEfficient Salient Region Detection with Soft Image Abstraction
LBI2013251M+CIEEE CVPR Looking Beyond the Image: Unsupervised Learning for Object Saliency and Detection
PCA20134.34M+CIEEE CVPRWhat Makes a Patch Distinct?
DRFI20130.697M+CIEEE CVPRSalient Object Detection: A Discriminative Regional Feature Integration Approach
GMR20130.149CIEEE CVPRSaliency Detection via Graph-based Manifold Ranking
HS20130.528CIEEE CVPRHierarchical Saliency Detection
LMLC2013140M+CIEEE TIPBayesian Saliency via Low and Mid Level Cues
SF20120.202CIEEE CVPRSaliency Filters: Contrast Based Filtering for Salient Region Detection
FES20110.096M+CImage Ana.Fast and Efficient Saliency Detection Using Sparse Sampling and Kernel Density Estimation
CB20112.24M+CBMVCAutomatic salient object segmentation based on context and shape prior
SVO201156.5M+CIEEE ICCVFusing Generic Objectness and Visual Saliency for Salient Object Detection
SWD20110.190M+CIEEE CVPRVisual saliency detection by spatially weighted dissimilarity
HC20110.017CIEEE CVPRGlobal Contrast based Salient Region Detection
RC20150.136CIEEE TPAMIGlobal Contrast based Salient Region Detection
SEG201010.9MECCVSegmenting salient objects from images and videos
MSS20100.076CIEEE ICIPSaliency detection using maximum symmetric surround
CA201049.0M+CIEEE CVPRContext-aware saliency detection
FT20090.072CIEEE CVPRFrequency-tuned salient region detection
AC20080.129MICVSSalient region detection and segmentation
LC20060.009CACM Multi.Visual attention detection in video sequences using spatiotemporal cues
OBJ20103.01M+CIEEE CVPRWhat is an object?
BMS20130.575M+CIEEE ICCVSaliency Detection: A Boolean Map Approach
COV201325.4MJ. of Vis.Visual saliency estimation by nonlinearly integrating features using region covariances
SS20120.053MIEEE PAMIImage Signature: Highlighting sparse salient regions
SIM20111.11MIEEE CVPRSaliency estimation using a non-parametric low-level vision model
SeR20091.31MJ. of Vis.Static and space-time visual saliency detection by self-resemblance
SUN20083.56MJ. of Vis.SUN: A bayesian framework for saliency using natural statistics
SR20070.040MIEEE CVPRSaliency detection: A spectral residual approach
GB20060.735M+CNIPS Graph-based visual saliency
AIM20098.66MJ. of Vis.Saliency, attention, and visual search: An information theoretic approach
IT19980.302MIEEE PAMI A model of saliency-based visual attention for rapid scene analysis
Detailed information of each method. Regarding source code type: `C' means 'C/C++', 'M' means 'Matlab', 'M+C' means a mixture of Matlab and C/C++.

News

  1. 2015/4/24: evaluation results of QCUT has been added
  2. 2015/10/24: evaluation results of MBD has been added

[:]

(Visited 74,291 times, 1 visits today)
Subscribe
Notify of
guest

28 Comments
Inline Feedbacks
View all comments
周华君

程老师,您好。我关注到最近一些unsupervised的方法使用了这个project中的RBD、DSR、MC和HS这4种方法在MSRA数据集上的maps,但是我在提供的网盘链接中没有找到RBD的maps。请问是否可以提供一下?谢谢

端到端

程老师,这个代码是demo依赖于其他9个项目的,配置opencv的时候该如何配置呢?单个项目配置我没问题,但是多个有依赖关系的我还是搞不定,抱歉问这么低级的问题,谢谢您啦

君子兰

程老师,你好,我没有找到HDCT这个算法的实现代码,麻烦能不能指以下在哪里

Qiqi Hou

数据集的下载链接现在无效。 你介意更新它们吗?

陈昱臻

我运行exe文件一直报错没有opencv_core300.dll但是无论我下opencv3.0.0RC1版本还是opencv3.0.0版本,解压都只有opencv_world300.dll。3.0.0版本根本不存在core,imgcodecs这几个dll

夏海蛟

我并没有调源代码,我用的是matlab调用已有的exe

陈昱臻

方便加一下qq吗? 本人804977871 不甚感激

陈昱臻

我运行exe文件一直报错没有opencv_core300.dll但是无论我下opencv3.0.0RC1版本还是opencv3.0.0版本,解压都只有opencv_world300.dll。3.0.0版本根本不存在core,imgcodecs这几个dll

陈昱臻

程老师能否提供一个通用的,跨版本的调试方法,以便我们后辈踩在巨人的肩膀上前行。

陈昱臻

程老师您好。我在使用您的C++代码在VS2013+opencv2.4.13上调试时,虽然我已经添加了库文件路径,并连接了库,但一直报错LINK : fatal error LNK1104: cannot open file ‘../Lib/CmLib.lib’以及CmLibd.lib(CmDefinition.obj) : error LNK2038: mismatch detected for ‘_ITERATOR_DEBUG_LEVEL’: value ‘2’ doesn’t match value ‘0’ in GetGC.obj这是什么原因?

Madhuri

My visual studio does not compile the as there is an error saying ” Cannot open include file: opencv2/opencv.hpp’. Can someone please reply me how to solve this issue.

Thanks,

夏海蛟

程老师,你好!我电脑上有你在github上关于显著性的exe,其他的都跑通了,RC的效果看起来不是很好,请问是什么原因。而matlab调用getLC.exe(第一个参数为图像路径,第二个参数为输出的文件夹路径)结果出来的图像全是黑的,我用txt打开exe,里面有一行写着不能用dos打开,请问这个exe怎么用?谢谢。

陈昱臻

夏老师您好 能方便告诉我调试这个代码的步骤吗 我一直报错无法解决

Yijun Yan

Dear Mingming,

I downloaded some evaluation results that you provided, and I found there are two kinds of saliency-cut results :‘_FT.PNG’ and ‘_SC.png’.
Could you tell me which is the true saliency-cut results?

Yijun

Yijun Yan

Dear Mingming,

Recently I was trying to download more database to test the performance of the saliency methods.
But I can’t access the link of JuddDB and DUTOMRON database.
Is it possible to update them?

Yijun

在想

程老师, 您好!
请问您能提供ASD-1000 和Pascal-S 850数据集的各种方法的saliency map吗?

夏天

您好,我下载了您 用来做evaluation的结果(images, ground truth, saliency maps, masks),其中,cut结果中有以_FT.png和_SC.png 两种。
请问 _FT.png是Adaptive Thresholding方法得到的吗?为什么我用2倍均值的方法求到的结果 和 您网站上下载的不一样?

kefeng

程老师您好,我刚接触显著区域检测这方面的知识,看了文中提到的LC算法,请问它的英文全称是什么?我看了原文献没看明白。谢谢!

郝海波

您好! 我在用deep learning做Salient Object Detection。请问能不能提供一点思路呢?

belindading

您好,我计算的AUC值和您的值有很大的差异,不知道您是用的什么代码进行AUC值的计算的呢? 可以发给我一份AUC的计算代码吗? 谢谢!